Molecular Soil Biology 2025, Vol.16, No.5, 241-254 http://bioscipublisher.com/index.php/msb 251 Kim K., and Lee B., 2023, Effects of climate change and drought tolerance on maize growth, Plants, 12(20): 3548. https://doi.org/10.3390/plants12203548 Li C., Guo J., Wang D., Chen X., Guan H., Li Y., Zhang D., Liu X., He G., Wang T., and Li Y., 2023, Genomic insight into changes of root architecture under drought stress in maize, Plant, Cell & Environment, 46(6): 1860-1872. https://doi.org/10.1111/pce.14567 Li C., Zhao C., Zhao X., Wang Y., Lv X., Zhu X., and Song X., 2022, Beneficial effects of biochar application with nitrogen fertilizer on soil nitrogen retention, absorption and utilization in maize production, Agronomy, 13(1): 113. https://doi.org/10.3390/agronomy13010113 Li J., Wang C., Liang W., and Liu S., 2021, Rhizosphere microbiome: the emerging barrier in plant-pathogen interactions, Frontiers in Microbiology, 12: 772420. https://doi.org/10.3389/fmicb.2021.772420 Lin L., He Y., and Chen J., 2016, The influence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil, Journal of Integrative Agriculture, 15: 1112-1120. https://doi.org/10.1016/S2095-3119(15)61204-7 Lopes T., Costa P., Cardoso P., Silva J., and Figueira E., 2025, Inducing drought resilience in maize through encapsulated bacteria: physiological and biochemical adaptations, Plants, 14(5): 812. https://doi.org/10.3390/plants14050812 Lu H., Xia Z., Fu Y., Wang Q., Xue J., and Jie C., 2020, Response of soil temperature, moisture, and spring maize (Zea mays L.) root/shoot growth to different mulching materials in semi-arid areas of Northwest China, Agronomy, 10(4): 453. https://doi.org/10.3390/agronomy10040453 Lu Y., Yan Y., Qin J., Ou L., Yang X., Liu F., and Xu Y., 2023, Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil, Frontiers in Plant Science, 14: 1206870. https://doi.org/10.3389/fpls.2023.1206870 Luo B., Hu H., Zheng H., An N., Guo J., Nie Z., Ma P., Zhang X., Liu D., Wu L., Gao D., Gao S., Su S., Zhu B., Gao S., and Yao Z., 2025, Fertilization regulates maize nutrient use efficiency through soil rhizosphere biological network and root transcriptome, Applied Soil Ecology, 207: 105912. https://doi.org/10.1016/j.apsoil.2025.105912 Ma J., Xie Y., Yang Y., Jing C., You X., Yang J., Sun C., Qin S., Chen J., Cao K., Huang J., and Li Y., 2022, AMF colonization affects allelopathic effects of Zea mays L. root exudates and community structure of rhizosphere bacteria, Frontiers in Plant Science, 13: 1050104. https://doi.org/10.3389/fpls.2022.1050104 Ma X., Li X., and Ludewig U., 2020, Arbuscular mycorrhizal colonisation outcompetes root hairs in maize under low phosphorus availability, Annals of Botany, 127(1): 155-166. https://doi.org/10.1093/aob/mcaa159 Mhlanga B., Pellegrino E., Thierfelder C., and Ercoli L., 2022, Conservation agriculture practices drive maize yield by regulating soil nutrient availability, arbuscular mycorrhizas, and plant nutrient uptake, Field Crops Research, 277: 108403. https://doi.org/10.1016/j.fcr.2021.108403 Mu L., Zhou H., Yang K., Wang J., Sun S., Lu Z., Wang L., Zhang N., and Bao L., 2025, Effect of biochar-based organic fertilizer on the growth of maize in cadmium-contaminated soil, Agriculture, 15(5): 447. https://doi.org/10.3390/agriculture15050447 Naeem A., Deppermann P., and Mühling K., 2023, Ammonium fertilization enhances nutrient uptake, specifically manganese and zinc, and growth of maize in unlimed and limed acidic sandy soil, Nitrogen, 4(2): 239-252. https://doi.org/10.3390/nitrogen4020017 Nassir A., Mishall A., and Mohammed A., 2024, Soil compaction induced by different tillage systems and its impact on growth and yield of maize (Zea mays L.), University of Thi-Qar Journal of Agricultural Research, 13(1): 185-200. https://doi.org/10.54174/utjagr.v13i1.302 Nawaz M., Noor M., Latifmanesh H., Wang X., Ma W., and Zhang W., 2023, Field traffic-induced soil compaction under moderate machine-field conditions affects soil properties and maize yield on sandy loam soil, Frontiers in Plant Science, 14: 1002943. https://doi.org/10.3389/fpls.2023.1002943 Nigussie A., Haile W., Agegnehu G., and Kiflu A., 2021, Growth, nitrogen uptake of maize (Zea mays L.) and soil chemical properties, and responses to compost and nitrogen rates and their mixture on different textured soils: pot experiment, Applied and Environmental Soil Science, 2021(1): 1-12. https://doi.org/10.1155/2021/9931763 Peer L., Bhat M., Lone A., Dar Z., and Mir B., 2024, Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture, Planta, 260(4): 81. https://doi.org/10.1007/s00425-024-04517-9 Peng X., Ren J., Chen P., Yang L., Luo K., Yuan X., Lin P., Fu Z., Li Y., Li Y., Yang W., and Yong T., 2024, Effects of soil physicochemical environment on the plasticity of root growth and land productivity in maize soybean relay strip intercropping system, Journal of the Science of Food and Agriculture, 104(7): 3865-3882. https://doi.org/10.1002/jsfa.13268
RkJQdWJsaXNoZXIy MjQ4ODYzNA==