MSB_2025v16n5

Molecular Soil Biology 2025, Vol.16, No.5, 241-254 http://bioscipublisher.com/index.php/msb 250 Guo W., Wang F., Lv J., Yu J., Wu Y., Wuriyanghan H., Le L., and Pu L., 2025, Phenotyping, genome‐wide dissection, and prediction of maize root architecture for temperate adaptability, iMeta, 4(2): e70015. https://doi.org/10.1002/imt2.70015 Hao C., Dungait J., Wei X., Ge T., Kuzyakov Y., Cui Z., Tian J., and Zhang F., 2022, Maize root exudate composition alters rhizosphere bacteria to control hotspots of hydrolase activity in response to nitrogen supply, Soil Biology and Biochemistry, 170: 108717. https://doi.org/10.1016/j.soilbio.2022.108717 Hartwig R., Santangeli M., Würsig H., Roldán M., Yim B., Lippold E., Tasca A., Oburger E., Tarkka M., Vetterlein D., Bienert P., Blagodatskaya E., Smalla K., Hause B., and Wimmer M., 2025, Drought response of the maize plant-soil-microbiome system is influenced by plant size and presence of root hairs, Annals of Botany, mcaf033. https://doi.org/10.1093/aob/mcaf033 Hazman M., and Kabil F., 2021, Maize root responses to drought stress depend on root class and axial position, Journal of Plant Research, 135: 105-120. https://doi.org/10.1007/s10265-021-01348-7 Hochholdinger F., Yu P., and Marcon C., 2018, Genetic control of root system development in maize, Trends in Plant Science, 23(1): 79-88. https://doi.org/10.1016/j.tplants.2017.10.004 Hong Y., Li D., Xie C., Zheng X., Yin J., Li Z., Zhang K., Jiao Y., Wang B., Hu Y., and Zhu Z., 2022, Combined apatite, biochar, and organic fertilizer application for heavy metal co-contaminated soil remediation reduces heavy metal transport and alters soil microbial community structure, The Science of the Total Environment, 851(Pt 1): 158033. https://doi.org/10.1016/j.scitotenv.2022.158033 Hu L., Robert C., Cadot S., Zhang X., Ye M., Li B., Manzo D., Chervet N., Steinger T., Van Der Heijden M., Schlaeppi K., and Erb M., 2018, Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota, Nature Communications, 9: 2738. https://doi.org/10.1038/s41467-018-05122-7 Hu W., Zhang Y., Xiangmin R., Fei J., Peng J., and Luo G., 2023, Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota, Agriculture, Ecosystems & Environment, 355: 108582. https://doi.org/10.1016/j.agee.2023.108582 Jaswal R., and Sandal S., 2024, Effect of conservation tillage and irrigation on soil water content, shoot-root growth parameters and yield in maize (Zea mays)-wheat (Triticum aestivum) cropping sequence, Journal of Soil Science and Plant Nutrition, 24: 7965-7979. https://doi.org/10.1007/s42729-024-02091-3 Jiang L., Ning A., Liu M., Zhu Y., Huang J., Guo Y., Feng W., Fu D., Wang H., and Wang J., 2025, Effects of tillage practices on soil properties and maize yield in different types of soda saline–alkali soils, Agriculture, 15(5): 542. https://doi.org/10.3390/agriculture15050542 Jiang P., Wang Y., Zhang Y., Fei J., Rong X., Peng J., Yin L., and Luo G., 2024, Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes, The New Phytologist, 243(4): 1506-1521. https://doi.org/10.1111/nph.19906 Jiao P., Ma R., Wang C., Chen N., Liu S., Qu J., Guan S., and Ma Y., 2022, Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize (Zea mays L.), Frontiers in Plant Science, 13: 932667. https://doi.org/10.3389/fpls.2022.932667 Karnatam K., Chhabra G., Saini D., Singh R., Kaur G., Praba U., Kumar P., Goyal S., Sharma P., Ranjan R., Sandhu S., Kumar R., and Vikal Y., 2023, Genome-wide meta-analysis of QTLs associated with root traits and implications for maize breeding, International Journal of Molecular Sciences, 24(7): 6135. https://doi.org/10.3390/ijms24076135 Karunarathne C., Kikuta M., and Nagaoka T., 2023, Shoot and root responses to low phosphorus and their genotypic variability in selected cultivars of Japanese core collections of maize and soybean, Soil Science and Plant Nutrition, 70: 100-113. https://doi.org/10.1080/00380768.2023.2283487 Kaur G., Vikal Y., Kaur L., Kalia A., Mittal A., Kaur D., and Yadav I., 2021, Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis, Plant Science: An International Journal of Experimental Plant Biology, 304: 110823. https://doi.org/10.1016/j.plantsci.2021.110823 Keya S., Islam M., Pham H., Rahman M., Bulle M., Patwary A., Razi M., Hemel F., Ghosh T., Huda N., Hawa Z., Rahman M., and Ravelombola W., 2024, Thirsty, soaked, and thriving: Maize morpho-physiological and biochemical responses to sequential drought, waterlogging, and re-drying, Plant Stress, 15: 100722. https://doi.org/10.1016/j.stress.2024.100722 Khan K., Rahim H., Mian I., Dawar K., Ali W., and Alatalo J., 2025, Phosphate-solubilizing bacteria-mediated rock phosphate utilization with poultry manure enhances soil nutrient dynamics and maize growth in semi-arid soil, Open Agriculture, 10(1): 20250450. https://doi.org/10.1515/opag-2025-0450 Khan W., Zhu Y., Khan A., Zhao L., Yang Y., Wang N., Hao M., Ma Y., Nepal J., Ullah F., Rehman M., Abra M., and Xiong Y., 2024, Above and under-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil, The Science of the Total Environment, 917: 170417. https://doi.org/10.1016/j.scitotenv.2024.170417

RkJQdWJsaXNoZXIy MjQ4ODYzNA==