MSB_2025v16n5

Molecular Soil Biology 2025, Vol.16, No.5, 241-254 http://bioscipublisher.com/index.php/msb 249 Acknowledgments My heartfelt thanks go to my supervisor and colleagues for their unwavering support and invaluable guidance throughout this research endeavor. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Adeniji A., Huang J., Li S., Lu X., and Guo R., 2024, Hot viewpoint on how soil texture, soil nutrient availability, and root exudates interact to shape microbial dynamics and plant health, Plant and Soil, 511: 69-90. https://doi.org/10.1007/s11104-024-07020-y Afridi M., Fakhar A., Kumar A., Ali S., Medeiros F., Muneer M., Ali H., and Saleem M., 2022, Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering, Microbiological Research, 265: 127199. https://doi.org/10.1016/j.micres.2022.127199 Bilyera N., Hummel C., Daudin G., Santangeli M., Zhang X., Santner J., Lippold E., Schlüter S., Bertrand I., Wenzel W., Spielvogel S., Vetterlein D., Razavi B., and Oburger E., 2021, Co-localised phosphorus mobilization processes in the rhizosphere of field-grown maize jointly contribute to plant nutrition, Soil Biology and Biochemistry, 165: 108497. https://doi.org/10.1016/j.soilbio.2021.108497 Canellas L., Olivares F., Canellas N., Mazzei P., and Piccolo A., 2019, Humic acids increase the maize seedlings exudation yield, Chemical and Biological Technologies in Agriculture, 6: 1-14. https://doi.org/10.1186/s40538-018-0139-7 Chen X., Liu P., Zhao B., Zhang J., Ren B., Li Z., and Wang Z., 2022, Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on phosphorus placement depth, Field Crops Research, 276: 108378. https://doi.org/10.1016/j.fcr.2021.108378 Chepsergon J., and Moleleki L., 2023, Rhizosphere bacterial interactions and impact on plant health, Current Opinion in Microbiology, 73: 102297. https://doi.org/10.1016/j.mib.2023.102297 Cotrufo M., Haddix M., Mullen J., Zhang Y., and McKay J., 2024, Deepening root inputs: potential soil carbon accrual from breeding for deeper rooted maize, Global Change Biology, 30(11): e17591. https://doi.org/10.1111/gcb.17591 Custos J., Moyne C., and Sterckeman T., 2020, How root nutrient uptake affects rhizosphere pH: a modelling study, Geoderma, 369: 114314. https://doi.org/10.1016/j.geoderma.2020.114314 Dong Q., Zhao X., Zhou D., Liu Z., Shi X., Yuan Y., Jia P., Liu Y., Song P., Wang X., Jiang C., Liu X., Zhang H., Zhong C., Guo F., Wan S., Yu H., and Zhang Z., 2022, Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere, Frontiers in Plant Science, 13: 957336. https://doi.org/10.3389/fpls.2022.957336 Gao J., Zhang Y., Xu C., Wang P., Huang S., and Lv Y., 2024, Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield, Agricultural Water Management, 294: 108728. https://doi.org/10.1016/j.agwat.2024.108728 Gao Y., Zhao Y., Li P., and Qi X., 2023, Responses of the maize rhizosphere soil environment to drought-flood abrupt alternation stress, Frontiers in Microbiology, 14: 1295376. https://doi.org/10.3389/fmicb.2023.1295376 Gao Z., Liang L., Wang X., Zhen W., Ding Z., Li C., Liu Z., Zhao M., Wang Z., and Zhou B., 2025, Soil compaction reduces the yield potential of densely planted maize (Zea mays L.) by disrupting root and shoot growth coordination, Plant and Soil, 513: 1595-1608. https://doi.org/10.1007/s11104-025-07272-2 Gholizadeh S., Nemati I., Vestergård M., Barnes C., Kudjordjie E., and Nicolaisen M., 2024, Harnessing root-soil-microbiota interactions for drought-resilient cereals, Microbiological Research, 283: 127698. https://doi.org/10.1016/j.micres.2024.127698 Gu H., Cseresnyés I., Butnor J., Li B., Sun H., Zhang X., Lu Y., and Liu X., 2024, Advancing noninvasive and nondestructive root phenotyping techniques: a two-phase permittivity model for accurate estimation of root volume, Geoderma, 442: 116773. https://doi.org/10.1016/j.geoderma.2024.116773 Guo H., Tian M., Ri X., and Chen Y., 2024, Phosphorus acquisition, translocation, and redistribution in maize, Journal of Genetics and Genomics, 52(3): 287-296. https://doi.org/10.1016/j.jgg.2024.09.018 Guo J., Li C., Zhang X., Li Y., Zhang D., Shi Y., Song Y., Li Y., Yang D., and Wang T., 2020, Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress, Plant Science: An International Journal of Experimental Plant Biology, 292: 110380. https://doi.org/10.1016/j.plantsci.2019.110380

RkJQdWJsaXNoZXIy MjQ4ODYzNA==