Molecular Soil Biology 2025, Vol.16, No.5, 230-240 http://bioscipublisher.com/index.php/msb 239 Lyu X., Sun C., Zhang J., Wang C., Zhao S., Ma C., Li S., Li H., Gong Z., and Yan C., 2022, Integrated proteomics and metabolomics analysis of nitrogen system regulation on soybean plant nodulation and nitrogen fixation, International Journal of Molecular Sciences, 23(5): 2545. https://doi.org/10.3390/ijms23052545 Matamoros M., and Becana M., 2021, Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling, Journal of Experimental Botany, 72: 5876-5892. https://doi.org/10.1093/jxb/erab008 Min C., Gupta R., Agrawal G., Rakwal R., and Kim S., 2019, Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach, Expert Review of Proteomics, 16: 795-804. https://doi.org/10.1080/14789450.2019.1654860 Min C., Park J., Bae J., Agrawal G., Rakwal R., Kim Y., Yang P., Kim S., and Gupta R., 2020, In-depth investigation of low-abundance proteins in matured and filling stages seeds of Glycine max Employing a combination of protamine sulfate precipitation and TMT-based quantitative proteomic analysis, Cells, 9(6): 1517. https://doi.org/10.3390/cells9061517 Moradi A., Dai S., Wong E., Zhu G., Yu F., Lam H., Wang Z., Burlingame A., Lin C., Afsharifar A., Yu W., Wang T., and Li N., 2021, Isotopically dimethyl labeling-based quantitative proteomic analysis of phosphoproteomes of soybean cultivars, Biomolecules, 11(8): 1218. https://doi.org/10.3390/biom11081218 Mund A., Brunner A., and Mann M., 2022, Unbiased spatial proteomics with single-cell resolution in tissues, Molecular Cell, 82(12): 2335-2349. https://doi.org/10.1016/j.molcel.2022.05.022 Muneer S., Ahmad J., Bashir H., and Qureshi M., 2012, Proteomics of nitrogen fixing nodules under various environmental stresses, Plant Omics, 5: 167-176. Nakhforoosh A., Hallin E., Karunakaran C., Korbas M., Stobbs J., and Kochian L., 2024, Visualization and quantitative evaluation of functional structures of soybean root nodules via synchrotron x-ray imaging, Plant Phenomics, 6: 203. https://doi.org/10.34133/plantphenomics.0203 Ni H., Hou X., Tian S., Liu C., Zhang G., Peng Y., Chen L., Wang J., Chen Q., and Xin D., 2024, Insights into the early steps of the symbiotic interaction between soybean (Glycine max) and sinorhizobium fredii symbiosis using transcriptome, small RNA, and degradome sequencing, Journal of Agricultural and Food Chemistry, 72: 17084-17098. https://doi.org/10.1021/acs.jafc.4c02312 Oehrle N., Sarma A., Waters J., and Emerich D., 2008, Proteomic analysis of soybean nodule cytosol, Phytochemistry, 69(13): 2426-2438. https://doi.org/10.1016/j.phytochem.2008.07.004 Pang M., Jones J., Wang T., Quan B., Kubat N., Qiu Y., Roukes M., and Chou T., 2024, Increasing proteome coverage through a reduction in analyte complexity in single-cell equivalent samples, Journal of Proteome Research, 24: 1528-1538. https://doi.org/10.1021/acs.jproteome.4c00062 Ren Z., Zhang L., Li H., Yang M., Wu X., Hu R., Lu J., Wang H., Wu X., Wang Z., and Li X., 2025, The BRUTUS iron sensor and E3 ligase facilitates soybean root nodulation by monoubiquitination of NSP1, Nature Plants, 11: 595-611. https://doi.org/10.1038/s41477-024-01896-5 Rhaman M., Ali M., Ye W., and Li B., 2024, Opportunities and challenges in advancing plant research with single-cell omics, Genomics, Proteomics & Bioinformatics, 22(2): qzae026. https://doi.org/10.1093/gpbjnl/qzae026 Song J., Montes-Luz B., Tadra-Sfeir M., Cui Y., Su L., Xu D., and Stacey G., 2022, High-resolution translatome analysis reveals cortical cell programs during early soybean nodulation, Frontiers in Plant Science, 13: 820348. https://doi.org/10.3389/fpls.2022.820348 Sun B., Wang Y., Yang Q., Gao H., Niu H., Li Y., Ma Q., Huan Q., Qian W., and Ren B., 2023, A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean, Journal of Integrative Plant Biology, 65(6): 1536-1552. https://doi.org/10.1111/jipb.13495 Sun X., Zhang H., Yang Z., Xing X., Fu Z., Li X., Kong Y., Li W., Du H., and Zhang C., 2024, Overexpression of GmPAP4 enhances symbiotic nitrogen fixation and seed yield in soybean under phosphorus-deficient condition, International Journal of Molecular Sciences, 25(7): 3649. https://doi.org/10.3390/ijms25073649 Vandereyken K., Sifrim A., Thienpont B., and Voet T., 2023, Methods and applications for single-cell and spatial multi-omics, Nature Reviews. Genetics, 1-22. https://doi.org/10.1038/s41576-023-00580-2 Veličković D., Liao Y., Thibert S., Veličković M., Anderton C., Voglmeir J., Stacey G., and Zhou M., 2022, Spatial mapping of plant n-glycosylation cellular heterogeneity inside soybean root nodules provided insights into legume-rhizobia symbiosis, Frontiers in Plant Science, 13: 869281. https://doi.org/10.3389/fpls.2022.869281 Vollmann J., Rischbeck P., Pachner M., Dordevic V., and Manschadi A., 2022, High-throughput screening of soybean di-nitrogen fixation and seed nitrogen content using spectral sensing, Comput. Electron. Agric., 199: 107169. https://doi.org/10.1016/j.compag.2022.107169 Wang T., Guo J., Peng Y., Lyu X., Liu B., Sun S., and Wang X., 2021, Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation, Science, 374: 65-71. https://doi.org/10.1126/science.abh2890
RkJQdWJsaXNoZXIy MjQ4ODYzNA==