Molecular Soil Biology 2025, Vol.16, No.4, 214-229 http://bioscipublisher.com/index.php/msb 227 Liu T., An F., and Su Y., 2025, Compound microbial agents improve the soil properties, fertilizer utilization and bacterial community structure in a continuous cropping soil, Soil Use and Management, 41(1): e70023. https://doi.org/10.1111/sum.70023 Lü J., Gui D., Zhang Y., Li R., Chen X., and Sha Z., 2024, Field application of microbial inoculants improved crop foliar morphology and physiology performance: a global meta-analysis, Scientia Horticulturae, 326: 112769. https://doi.org/10.1016/j.scienta.2023.112769 Mrunalini K., Behera B., Jayaraman S., Abhilash P., Dubey P., Narayanaswamy G., Prasad J., Rao K., Krishnan P., Pratibha G., and Rao C., 2022, Nature-based solutions in soil restoration for improving agricultural productivity, Land Degradation & Development, 33: 1269-1289. https://doi.org/10.1002/ldr.4207 Mwaura G., Kiboi M., Mugwe J., Nicolay G., Bett E., Muriuki A., Musafiri C., and Ngetich F., 2021, Economic evaluation and socioeconomic drivers influencing farmers’ perceptions on benefits of using organic inputs technologies in Upper Eastern Kenya, Environmental Challenges, 5: 100282. https://doi.org/10.1016/j.envc.2021.100282 Niu H., Pang Z., Fallah N., Zhou Y., Zhang C., Hu C., Lin W., and Yuan Z., 2021, Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer, PLoS ONE, 16(1): e0245626. https://doi.org/10.1371/journal.pone.0245626 Nogales A., Navarro-Torre S., Abreu M., Santos E., Cortinhas A., Fors R., Bailly M., Róis A., and Caperta A., 2023, Unravelling the combined use of soil and microbial technologies to optimize cultivation of halophyte Limonium algarvense (Plumbaginaceae) using saline soils and water, Soil Systems, 7(3): 74. https://doi.org/10.3390/soilsystems7030074 Priori S., Pellegrini S., Vignozzi N., and Costantini E., 2020, Soil physical-hydrological degradation in the root-zone of tree crops: problems and solutions, Agronomy, 11(1): 68. https://doi.org/10.3390/agronomy11010068 Raheem A., Bankole O., Danso F., Musa M., Adegbite T., and Simpson V., 2025, Physical management strategies for enhancing soil resilience to climate change: insights from Africa, European Journal of Soil Science, 76(1): e70030. https://doi.org/10.1111/ejss.70030 Rosinger C., Keiblinger K., Bieber M., Bernardini L., Huber S., Mentler A., Sae-Tun O., Scharf B., and Bodner G., 2023, On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices, Geoderma, 433: 116466. https://doi.org/10.1016/j.geoderma.2023.116466 Sabahy A., El-Sheshny A., Elsamra E., Eid M., and Essam M., 2024, Effects of varied soil leveling methods on physical properties: a comparative analysis, Civil Engineering Journal, 10(11): 3672-3682. https://doi.org/10.28991/cej-2024-010-11-014 Shah F., and Wu W., 2019, Soil and crop management strategies to ensure higher crop productivity within sustainable environments, Sustainability, 11(5): 1485. https://doi.org/10.3390/SU11051485 Shang X., Pan H., Wang X., He H., and Li M., 2014, Leonurus japonicus Houtt.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine, Journal of Ethnopharmacology, 152(1): 14-32. https://doi.org/10.1016/j.jep.2013.12.052 Singh H., Northup B., Rice C., and Prasad P., 2022, Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis, Biochar, 4: 1-17. https://doi.org/10.1007/s42773-022-00138-1 Song M., Li J., Gao L., and Tian Y., 2023, Comprehensive evaluation of effects of various carbon-rich amendments on overall soil quality and crop productivity in degraded soils, Geoderma, 436: 116529. https://doi.org/10.1016/j.geoderma.2023.116529 Sykes A., Macleod M., Eory V., Rees R., Payen F., Myrgiotis V., Williams M., Sohi S., Hillier J., Moran D., Manning D., Goglio P., Seghetta M., Williams A., Harris J., Dondini M., Walton J., House J., and Smith P., 2019, Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology, Global Change Biology, 26: 1085-1108. https://doi.org/10.1111/gcb.14844 Tahat M., Alananbeh K., Othman Y., and Leskovar D., 2020, Soil health and sustainable agriculture, Sustainability, 12(12): 4859. https://doi.org/10.3390/su12124859 Thidar M., Gong D., Mei X., Lili G., Li H., Hao W., and Gu F., 2020, Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China, Agricultural Water Management, 241: 106340. https://doi.org/10.1016/j.agwat.2020.106340 Tian P., Lian H., Wang Z., Jiang Y., Li C., Sui P., and Qi H., 2020, Effects of deep and shallow tillage with straw incorporation on soil organic carbon, total nitrogen and enzyme activities in Northeast China, Sustainability, 12: 8679. https://doi.org/10.3390/su12208679 Tiefenbacher A., Sandén T., Haslmayr H., Miloczki J., Wenzel W., and Spiegel H., 2021, Optimizing carbon sequestration in croplands: a synthesis, Agronomy, 11: 882. https://doi.org/10.3390/AGRONOMY11050882 Valencia A., Ortiz G., Tapia D., Chicaiza M., Verdejo J., and Reyes Y., 2025, Soil improvement through organic fertilizers, Multidisciplinar (Montevideo), 3: 36. https://doi.org/10.62486/agmu202536
RkJQdWJsaXNoZXIy MjQ4ODYzNA==