Molecular Soil Biology 2025, Vol.16, No.4, 214-229 http://bioscipublisher.com/index.php/msb 225 Deng Z., Wang J., Yan Y., Wang J., Shao W., and Wu Z., 2024, Biochar-based Bacillus subtilis inoculants promote plant growth: Regulating microbial community to improve soil properties, Journal of Environmental Management, 373: 123534. https://doi.org/10.1016/j.jenvman.2024.123534 Dhaliwal S., Naresh R., Mandal A., Walia M., Gupta R., Singh R., and Dhaliwal M., 2019, Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review, Journal of Plant Nutrition, 42: 2873-2900. https://doi.org/10.1080/01904167.2019.1659337 Dilrukshi R., Nakashima K., and Kawasaki S., 2018, Soil improvement using plant-derived urease-induced calcium carbonate precipitation, Soils and Foundations, 58(4): 894-910. https://doi.org/10.1016/J.SANDF.2018.04.003 Ding Z., Kheir A., Ali O., Hafez E., ElShamey E., Zhou Z., Wang B., Lin X., Ge Y., Fahmy A., and Seleiman M., 2020, A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity, Journal of Environmental Management, 277: 111388. https://doi.org/10.1016/j.jenvman.2020.111388 Doan T., Henry-Des-Tureaux T., Rumpel C., Janeau J., and Jouquet P., 2015, Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment, The Science of the Total Environment, 514: 147-154. https://doi.org/10.1016/j.scitotenv.2015.02.005 Fall A., Nakabonge G., Ssekandi J., Founoune-Mboup H., Apori S., Ndiaye A., Badji A., and Ngom K., 2022, Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil, Frontiers in Fungal Biology, 3: 723892. https://doi.org/10.3389/ffunb.2022.723892 Fu Y., De Jonge L., Møldrup P., Paradelo M., and Arthur E., 2022, Improvements in soil physical properties after long-term manure addition depend on soil and crop type, Geoderma, 425: 116062. https://doi.org/10.1016/j.geoderma.2022.116062 Gu Y., Liu Y., Li J., Cao M., Wang Z., Li J., Meng D., Cao P., Duan S., Zhang M., Tan G., Xiong J., Yin H., and Zhou Z., 2022, Mechanism of intermittent deep tillage and different depths improving crop growth from the perspective of rhizosphere soil nutrients, root system architectures, bacterial communities, and functional profiles, Frontiers in Microbiology, 12: 759374. https://doi.org/10.3389/fmicb.2021.759374 Guan R., Li Y., Jia Y., Jiang F., and Li L., 2024, Acidified biochar one-off application for saline-alkali soil improvement: A three-year field trial evaluating the persistence of effects, Industrial Crops and Products, 222(5): 119972. https://doi.org/10.1016/j.indcrop.2024.119972 Gujre N., Soni A., Rangan L., Tsang D., and Mitra S., 2020, Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review, Environmental Pollution, 268(Pt B): 115549. https://doi.org/10.1016/j.envpol.2020.115549 Guo Y., Tian J., and Wang Z., 2025, Effects of different biological amendments on rice physiology, yield, quality, and soil microbial community of rice–crab co-culture in saline–alkali soil, Agronomy, 15(3): 649. https://doi.org/10.3390/agronomy15030649 Hafez E., Osman H., Gowayed S., Okasha S., Omara A., Sami R., El-Monem A., and El-Razek U., 2021, Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles, Agronomy, 11: 676. https://doi.org/10.3390/AGRONOMY11040676 Hao D., Li C., Xiao P., Xie H., Bao X., and Wang L., 2023, Conservation tillage in medicinal plant cultivation in China: what, why, and how, Agronomy, 13(7): 1890. https://doi.org/10.3390/agronomy13071890 Hessel R., Wyseure G., Panagea I., Alaoui A., Reed M., Van Delden H., Muro M., Mills J., Oenema O., Areal F., Van Den Elsen E., Verzandvoort S., Assinck F., Elsen A., Lipiec J., Koutroulis A., O’Sullivan L., Bolinder M., Fleskens L., Kandeler E., Montanarella L., Heinen M., Tóth Z., Hallama M., Cuevas J., Baartman J., Piccoli I., Dalgaard T., Stolte J., Black J., and Chivers C., 2022, Soil-improving cropping systems for sustainable and profitable farming in Europe, Land, 11(6): 780. https://doi.org/10.3390/land11060780 Hijbeek R., Loon M., Ouaret W., Boekelo B., and Ittersum M., 2021, Liming agricultural soils in Western Kenya: can long-term economic and environmental benefits pay off short term investments? Agricultural Systems, 190: 103095. https://doi.org/10.1016/J.AGSY.2021.103095 Hörner D., and Wollni M., 2022, Does integrated soil fertility management increase returns to land and labor? Agricultural Economics, 53(3): 337-355. https://doi.org/10.1111/agec.12699 Hu R., Zheng B., Liu Y., Peng S., Gong J., Li J., Qin T., Liang J., Xiong K., Shao L., Zheng Z., Yi Z., Zhou Q., and Li J., 2024, Deep tillage enhances the spatial homogenization of bacterial communities by reducing deep soil compaction, Soil and Tillage Research, 239: 106062. https://doi.org/10.1016/j.still.2024.106062 Huang G., Liu B., Jiang X., Liang Y., Cai J., and Huang L., 2025, The application of amendments improves properties of salt-affected soils across China, Soil and Tillage Research, 248: 106431. https://doi.org/10.1016/j.still.2024.106431
RkJQdWJsaXNoZXIy MjQ4ODYzNA==