Molecular Soil Biology 2025, Vol.16, No.4, 199-213 http://bioscipublisher.com/index.php/msb 2 13 Wu J., Jin L., Wang N., Wei D., Pang M., Li D., Wang J., Li Y., Sun X., Wang W., and Wang L., 2023, Effects of combined application of chemical fertilizer and biochar on soil physio-biochemical properties and maize yield, Agriculture, 13(6): 1200. https://doi.org/10.3390/agriculture13061200 Wu Z., Xue B., Wang S., Xing X., Nuo M., Meng X., Wu M., Jiang H., Ma H., Yang M., Wei X., Zhao G., and Tian P., 2024, Rice under dry cultivation–maize intercropping improves soil environment and increases total yield by regulating belowground root growth, Plants, 13(21): 2957. https://doi.org/10.3390/plants13212957 Xing Y., Li Y., Zhang F., and Wang X., 2024, Appropriate application of organic fertilizer can effectively improve soil environment and increase maize yield in loess plateau, Agronomy, 14(5): 993. https://doi.org/10.3390/agronomy14050993 Yang L., Muhammad I., Chi Y., Liu Y., Wang G., Wang Y., and Zhou X., 2022, Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system, The Science of the Total Environment, 853: 158370. https://doi.org/10.1016/j.scitotenv.2022.158370 Yang W., Zhang Q., Cai H., Bai T., and Ren X., 2024, Maize root-soil microbial interactions and their effects on soil health and yield, Turkish Journal of Agriculture and Forestry, 48(6): 991-1003. https://doi.org/10.55730/1300-011x.3235 Yang Z., Cao Y., Shi Y., Qin F., Jiang C., and Yang S., 2023, Genetic and molecular exploration of maize environmental stress resilience: towards sustainable agriculture, Molecular Plant, 16(10): 1496-1517. https://doi.org/10.1016/j.molp.2023.07.005 Zhang S., Bai J., Zhang G., Xia Z., Wu M., and Lu H., 2022a, Negative effects of soil warming, and adaptive cultivation strategies of maize: a review, The Science of the Total Environment, 862: 160738. https://doi.org/10.1016/j.scitotenv.2022.160738 Zhang S., Meng L., Hou J., Liu X., Ogundeji A., Cheng Z., Yin T., Clarke N., Hu B., and Li S., 2021, Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast China, Plant and Soil, 481: 63-82. https://doi.org/10.1007/s11104-022-05616-w Zhang Z., An J., Xiong S., Li X., Xin M., Wang J., Han Y., Wang G., Feng L., Lei Y., Yang B., Xing F., Li Y., and Wang Z., 2022b, Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake, Field Crops Research, 279: 108470. https://doi.org/10.1016/j.fcr.2022.108470 Zheng Y., Yue Y., Li C., Wang Y., Zhang H., Ren H., Gong X., Jiang Y., and Qi H., 2023, Revolutionizing maize crop productivity: the winning combination of zigzag planting and deep nitrogen fertilization for maximum yield through root-shoot ratio management, Agronomy, 13(5): 1307. https://doi.org/10.3390/agronomy13051307
RkJQdWJsaXNoZXIy MjQ4ODYzNA==