MSB_2025v16n4

Molecular Soil Biology 2025, Vol.16, No.4, 199-213 http://bioscipublisher.com/index.php/msb 2 12 Ramadhan M., 2021, Yield and yield components of maize and soil physical properties as affected by tillage practices and organic mulching, Saudi Journal of Biological Sciences, 28: 7152-7159. https://doi.org/10.1016/j.sjbs.2021.08.005 Ranum P., Peña-Rosas J., and Garcia-Casal M., 2014, Global maize production, utilization, and consumption, Annals of the New York Academy of Sciences, 1312(1): 105-112. https://doi.org/10.1111/nyas.12396 Ruf T., Gilcher M., Udelhoven T., and Emmerling C., 2021, Implications of bioenergy cropping for soil: remote sensing identification of silage maize cultivation and risk assessment concerning soil erosion and compaction, Land: 10(2): 128. https://doi.org/10.3390/LAND10020128 Sah R., Sah R., Chakraborty M., Prasad K., Pandit M., Tudu V., Chakravarty M., Narayan S., Rana M., and Moharana D., 2020, Impact of water deficit stress in maize: Phenology and yield components, Scientific Reports, 10: 2944. https://doi.org/10.1038/s41598-020-59689-7 Sanderman J., Savage K., and Dangal S., 2020, Mid‐infrared spectroscopy for prediction of soil health indicators in the United States, Soil Science Society of America Journal, 84: 251-261. https://doi.org/10.1002/saj2.20009 Sankhyan N., Sharma N., Sharma R., Anjali, Sharma G., and Thakur A., 2023, Sustainable soil management: Insights from a 47-year maize-wheat cropping system study, Applied Soil Ecology, 195: 105230. https://doi.org/10.1016/j.apsoil.2023.105230 Schloter M., Nannipieri P., Sørensen S., and Elsas J., 2017, Microbial indicators for soil quality, Biology and Fertility of Soils, 54: 1-10. https://doi.org/10.1007/s00374-017-1248-3 Secco D., Bassegio D., De Marins A., Chang P., Savioli M., Castro M., Mesa V., Silva É., and Wendt E., 2023, Short-term impacts of different intercropping times of maize and ruzigrass on soil physical properties in subtropical Brazil, Soil and Tillage Research, 234: 105838. https://doi.org/10.1016/j.still.2023.105838 Semenov M., Zhelezova A., Ksenofontova N., Ivanova E., Nikitin D., and Semenov V., 2025, Microbiological indicators for assessing the effects of agricultural practices on soil health: a review, Agronomy, 15(2): 335. https://doi.org/10.3390/agronomy15020335 Singh A., Srivastava A., Johri P., Dwivedi M., Kaushal R., Trivedi M., Upadhyay T., Alabdallah N., Ahmad I., Saeed M., and Lakhanpal S., 2025. Odyssey of environmental and microbial interventions in maize crop improvement. Frontiers in Plant Science, 15: 1428475. https://doi.org/10.3389/fpls.2024.1428475 Sivamurugan A., Surendrakumar A., Bharathi C., Karthikeyan R., Pazhanivelan S., Manivannan V., and Shanmugapriya P., 2025, Growth and yield of irrigated maize (Zea mays L.) as influenced by mechanization and nutrient management practices, Plant Science Today, 12(1): 1-6. https://doi.org/10.14719/pst.4777 Smith R., and Boardman J., 2025, Muddy flooding from soil erosion associated with maize cultivation: a case study from East Devon, UK, Soil Use and Management, 41(1): e70038. https://doi.org/10.1111/sum.70038 Sobiech Ł., Grzanka M., Idziak R., and Blecharczyk A., 2025, The effect of post-emergence application of biostimulants and soil amendments in maize cultivation on the growth and yield of plants, Plants, 14(9): 1274. https://doi.org/10.3390/plants14091274 Tao J., Liu X., Liang Y., Niu J., Xiao Y., Gu Y., Ma L., Meng D., Zhang Y., Huang W., Peng D., and Yin H., 2017, Maize growth responses to soil microbes and soil properties after fertilization with different green manures, Applied Microbiology and Biotechnology, 101: 1289-1299. https://doi.org/10.1007/s00253-016-7938-1 Terefe H., Mengesha G., Yitayih G., and Bogale G., 2023, A large-scale survey reveals agro‐ecological factors influence spatio‐temporal distribution and epidemics of maize leaf blight: implications for prioritizing sustainable management options, Journal of Sustainable Agriculture and Environment, 2(4): 513-528. https://doi.org/10.1002/sae2.12070 Wang L., Zechariah E., Fudjoe S., Li L., Xie J., Luo Z., Cai L., Khan S., Xu W., and Chen Y., 2022, Continuous maize cultivation with high nitrogen fertilizers associated with the formation of dried soil layers in the semiarid farmland on the Loess Plateau, Journal of Hydrology, 613: 128324. https://doi.org/10.1016/j.jhydrol.2022.128324 Wang Y., Zou L., Lou C., Geng X., Zhang S., Chen X., Zhang Y., Huang D., and Liang A., 2024, No-tillage with straw retention influenced maize root growth morphology by changing soil physical properties and aggregate structure in Northeast China: a ten-year field experiment, Geoderma Regional, 38: e00840. https://doi.org/10.1016/j.geodrs.2024.e00840 Wierzchowski P., Dobrzyński J., Mazur K., Kierończyk M., Wardal W., Sakowski T., and Barszczewski J., 2021, Chemical properties and bacterial community reaction to acidified cattle slurry fertilization in soil from maize cultivation, Agronomy, 11(3): 601. https://doi.org/10.3390/AGRONOMY11030601 Wolińska A., Podlewski J., Słomczewski A., Grządziel J., Galazka A., and Kuźniar A., 2022, Fungal indicators of sensitivity and resistance to long-term maize monoculture: a culture-independent approach, Frontiers in Microbiology, 12: 799378. https://doi.org/10.3389/fmicb.2021.799378

RkJQdWJsaXNoZXIy MjQ4ODYzNA==