Molecular Soil Biology 2025, Vol.16, No.3, 150-161 http://bioscipublisher.com/index.php/msb 160 Kalamulla R., Karunarathna S.C., Tibpromma S., Galappaththi M.C., Suwannarach N., Stephenson S.L., Asad S., Salem Z.S., and Yapa N., 2022, Arbuscular mycorrhizal fungi in sustainable agriculture, Sustainability, 14(19): 12250. https://doi.org/10.3390/su141912250 Lehnert H., Serfling A., Enders M., Friedt W., and Ordon F., 2017, Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum), New Phytologist, 215(2): 779-791. https://doi.org/10.1111/nph.14595 Lenoir I., Fontaine J., and Sahraoui A.L.H., 2016, Arbuscular mycorrhizal fungal responses to abiotic stresses: a review, Phytochemistry, 123: 4-15. https://doi.org/10.1016/j.phytochem.2016.01.002 Marrassini V., Ercoli L., Piazza G., and Pellegrino E., 2024, Plant genotype and inoculation with indigenous arbuscular mycorrhizal (AM) fungi modulate wheat productivity and quality of processed products through changes in the frequency of root AM fungal taxa, Field Crops Research, 315: 109456. https://doi.org/10.1016/j.fcr.2024.109456 Martin F.M., and van Der Heijden M.G., 2024, The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application, New Phytologist, 242(4): 1486-1506. https://doi.org/10.1111/nph.19541 Mason A.R.G., Salomon M.J., Lowe A.J., and Cavagnaro T.R., 2025, Arbuscular mycorrhizal fungi inoculation and biochar application enhance soil carbon and productivity in wheat and barley, Science of The Total Environment, 977: 179230. https://doi.org/10.1016/j.scitotenv.2025.179230 McKenna T.P., Koziol L., Crain J., Crews T.E., Sikes B.A., DeHaan L.R., and Bever J.D., 2025, Selection for agronomic traits in intermediate wheatgrass increases responsiveness to arbuscular mycorrhizal fungi, Plants, People, Planet, 7(3): 861-870. https://doi.org/10.1002/ppp3.10600 Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., and Ashraf M., 2014, The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments, Biotechnology Advances, 32(2): 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005 Ndiate N.I., Zaman Q.U., Francis I.N., Dada O.A., Rehman A., Asif M., Goffner D., Kane A., Liqun C., and Haider F.U., 2022, Soil amendment with arbuscular mycorrhizal fungi and biochar improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivumL.), Sustainability, 14(6): 3210. https://doi.org/10.3390/su14063210 Oliveira R. S., Rocha I., Ma Y., Vosatka M., and Freitas H., 2016, Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivumL.), Journal of Toxicology and Environmental Health, Part A, 79(7): 329-337. https://doi.org/10.1080/15287394.2016.1153448 Sarwade P.P., Gaisamudre K.N., and Gaikwad R.S., 2024, Mycorrhizal fungi in sustainable agriculture: enhancing crop yields and soil health, Plantae Scientia, 7(5): 55-61. https://doi.org/10.32439/ps.v7i5.55-61 Sharma K., Gupta S., Thokchom S. D., Jangir P., and Kapoor R., 2021, Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: deep insights on the recondite players, Frontiers in Plant Science, 12: 642101. https://doi.org/10.3389/fpls.2021.642101 Tedersoo L., and Bahram M., 2019, Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes, Biological Reviews, 94(5): 1857-1880. https://doi.org/10.1111/brv.12538 Thirkell T.J., Grimmer M., James L., Pastok D., Allary T., Elliott A., Paveley N., Daniell T., and Field K.J., 2022, Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit, Food and Energy Security, 11(2): e370. https://doi.org/10.1002/fes3.370 Thirkell T.J., Pastok D., and Field K.J., 2020, Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration, Global Change Biology, 26(3): 1725-1738. https://doi.org/10.1111/gcb.14851 Tran B.T., Cavagnaro T.R., and Watts-Williams S.J., 2019, Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat, Mycorrhiza, 29(5): 445-457. https://doi.org/10.1007/s00572-019-00911-4 Treseder K.K., 2004, A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies, New Phytologist, 164(2): 347-355. https://doi.org/10.1111/J.1469-8137.2004.01159.X Vannini C., Domingo G., Fiorilli V., Seco D. G., Novero M., Marsoni M., Wisniewski-Dye F., Bracale M., Moulin L., and Bonfante P., 2021, Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant growth-promoting bacteria modulates growth and defense in wheat, Plant, Cell and Environment, 44(6): 1946-1960. https://doi.org/10.1111/pce.14039
RkJQdWJsaXNoZXIy MjQ4ODYzNA==