MSB_2025v16n3

Molecular Soil Biology 2025, Vol.16, No.3, 150-161 http://bioscipublisher.com/index.php/msb 159 Akbar M., Chohan S. A., Yasin N. A., Ahmad A., Akram W., and Nazir A., 2023, Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties, PeerJ, 11: e15686. https://doi.org/10.7717/peerj.15686 Alaux P. L., Courty P. E., Fréville H., David J., Rocher A., and Taschen E., 2024, Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis, Mycorrhiza, 34(4): 351-360. https://doi.org/10.1007/s00572-024-01150-y Bernardo L., Morcia C., Carletti P., Ghizzoni R., Badeck F. W., Rizza F., Lucici L., and Terzi V., 2017, Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae, Journal of Proteomics, 169: 21-32. https://doi.org/10.1016/j.jprot.2017.03.024 Bortolot M., Buffoni B., Mazzarino S., Hoff G., Martino E., Fiorilli V., and Salvioli Di Fossalunga A., 2024, The importance of mycorrhizal fungi and their associated bacteria in promoting crops’ performance: an applicative perspective, Horticulturae, 10(12): 1-12. https://doi.org/10.3390/horticulturae10121326 Branco S., Schauster A., Liao H. L., and Ruytinx J., 2022, Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi, New Phytologist, 235(6): 2158-2175. https://doi.org/10.1111/nph.18308 Conti G., Urcelay C., Gundel P.E., and Piñeiro G., 2025, The potential of arbuscular mycorrhizal fungi to improve soil organic carbon in agricultural ecosystems: A meta-analytical approach, Functional Ecology, 39(4): 1016-1030. https://doi.org/10.1111/1365-2435.14753 de Souza Campos P. M., Borie F., Cornejo P., Meier S., López-Ráez J. A., Lopez-Garcia A., and Seguel A., 2021, Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions, Journal of Plant Physiology, 256: 153297. https://doi.org/10.1016/j.jplph.2020.153297 De Vita P., Avio L., Sbrana C., Laidò G., Marone D., Mastrangelo A.M., Cattivelli L., and Giovannetti M., 2018, Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat, Scientific Reports, 8(1): 10612. https://doi.org/10.1038/s41598-018-29020-6 Dhiman M., Sharma L., Kaushik P., Singh A., and Sharma M.M., 2022, Mycorrhiza: an ecofriendly bio-tool for better survival of plants in nature, Sustainability, 14(16): 10220. https://doi.org/10.3390/su141610220 Duan H.X., Luo C.L., Li J.Y., Wang B.Z., Naseer M., and Xiong Y.C., 2021, Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent, Agronomy for Sustainable Development, 41(1): 3. https://doi.org/10.1007/s13593-020-00659-8 Elliott A.J., Daniell T.J., Cameron D.D., and Field K.J., 2021, A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients, Plants, People, Planet, 3(5): 588-599. https://doi.org/10.1002/ppp3.10094 Fall A.F., Nakabonge G., Ssekandi J., Founoune-Mboup H., Apori S.O., Ndiaye A., Badji A., and Ngom K., 2022, Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil, Frontiers in Fungal Biology, 3: 723892. https://doi.org/10.3389/ffunb.2022.723892 Fiorilli V., Vannini C., Ortolani F., Garcia-Seco D., Chiapello M., Novero M., Domingo G., Tezi V., Morcia C., Bagnaresi P., Moulin L., Bracale M., and Bonfante P., 2018, Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat, Scientific Reports, 8(1): 9625. https://doi.org/10.1038/s41598-018-27622-8 Ganugi P., Masoni A., Pietramellara G., and Benedettelli S., 2019, A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy, 9(12): 840. https://doi.org/10.3390/agronomy9120840 Ganugi P., Masoni A., Sbrana C., Dell’Acqua M., Pietramellara G., Benedettelli S., and Avio L., 2021, Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection, Scientific reports, 11(1): 13426. https://doi.org/10.1038/s41598-021-92837-1 George N.P., and Ray J.G., 2023, The inevitability of arbuscular mycorrhiza for sustainability in organic agriculture—A critical review, Frontiers in Sustainable Food Systems, 7: 1124688. https://doi.org/10.3389/fsufs.2023.1124688 Han A.Q., Chen S.B., Zhang D.D., Liu J., Zhang M.C., Wang B., Xiao Y., Liu H., Guo T., Kang G., and Li G.Z., 2025, Effects of arbuscular mycorrhizal fungi on the growth and nutrient uptake in wheat under low potassium stress, Plants, 14(9): 1288. https://doi.org/10.3390/plants14091288 Ingraffia R., Amato G., Frenda A.S., and Giambalvo D., 2019, Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system, PLoS ONE, 14(3): e0213672. https://doi.org/10.1371/journal.pone.0213672 Jacott C.N., Murray J.D., and Ridout C.J., 2017, Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding, Agronomy, 7(4): 75. https://doi.org/10.3390/AGRONOMY7040075

RkJQdWJsaXNoZXIy MjQ4ODYzNA==