Molecular Soil Biology 2025, Vol.16, No.2, 91-102 http://bioscipublisher.com/index.php/msb 101 Rao I., Neeraja C., Srikanth B., Subrahmanyam D., Swamy K., Rajesh K., Vijayalakshmi P., Kiran T., Sailaja N., Revathi P., Rao P., Rao L., Surekha K., Babu V., and Voleti S., 2018, Identification of rice landraces with promising yield and the associated genomic regions under low nitrogen, Scientific Reports, 8(1): 9200. https://doi.org/10.1038/s41598-018-27484-0 Salama E., Kambale R., Mohan S., Premnath A., Yousef A., Moursy A., Abdelsalam N., Moneim D., Muthurajan R., and Boopathi N., 2024, Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency, Gene, 927: 148715. https://doi.org/10.1016/j.gene.2024.148715 Shen C., Chen K., Cui Y., Chen J., Mi X., Zhu S., Zhu Y., Ali J., Ye G., Li Z., and Xu J., 2021, QTL mapping and favorable allele mining of nitrogen deficiency tolerance using an interconnected breeding population in rice, Frontiers in Genetics, 12: 616428. https://doi.org/10.3389/fgene.2021.616428 Silva J., Pede V., Radanielson A., Kodama W., Duarte A., De Guia A., Malabayabas A., Pustika A., Argosubekti N., Vithoonjit D., Hieu P., Pame A., Singleton G., and Stuart A., 2022, Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia, Agricultural Systems, 198: 103383. https://doi.org/10.1016/j.agsy.2022.103383 Singh R., Singh P., Singh H., Christopher K., Singh P., Kumar A., and Kumar A., 2023, Impact of climate resilient technology on growth and yield of paddy (Oryza sativa L.) under submergence condition, International Journal of Environment and Climate Change, 13(10): 3057-3065. https://doi.org/10.9734/ijecc/2023/v13i102974 Suman A., Mishra A., Shukla G., Sah D., Chandra U., Chaubey A., Mishra B., Pathak J., and Panwar G., 2024, Analyzing alternatives for managing nitrogen in puddled transplanted rice in a semi-arid area of India, Sustainability, 16(14): 6096. https://doi.org/10.3390/su16146096 Tao Z., Liu Y., Chen J., Cao F., and Huang M., 2022, Yield attributes response to nitrogen fertilization in low-nitrogen tolerant hybrid rice, Agronomy, 12(10), 2320. https://doi.org/10.3390/agronomy12102320 Van Bueren E., and Struik P., 2017, Diverse concepts of breeding for nitrogen use efficiency. A review, Agronomy for Sustainable Development, 37: 1-24. https://doi.org/10.1007/s13593-017-0457-3 Vinod K., and Heuer S., 2012. Approaches towards nitrogen- and phosphorus-efficient rice. AoB Plants, 2012: pls028. https://doi.org/10.1093/aobpla/pls028 Wang B., Zhou G., Guo S., Li X., Yuan J., and Hu A., 2022, Improving nitrogen use efficiency in rice for sustainable agriculture: strategies and future perspectives, Life, 12(10): 1653. https://doi.org/10.3390/life12101653 Wang F., Yoshida H., and Matsuoka M., 2021, Making the "green revolution" truly green: improving crop nitrogen use efficiency, Plant & cell physiology, 62(6): 942-947. https://doi.org/10.1093/pcp/pcab051 Wang Y., Jiang J., Qian Y., Miao S., Wang W., Xu J., Fu B., Zhang F., and Zhao X., 2023, Multi-omics analysis reveals the regulatory and metabolic mechanisms underlying low-nitrogen tolerance at the flowering stage in rice, Agronomy, 13(2): 578. https://doi.org/10.3390/agronomy13020578 Wei D., Cui K., Ye G., Pan J., Xiang J., Huang J., and Nie L., 2012, QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice, Plant and Soil, 359: 281-295. https://doi.org/10.1007/s11104-012-1142-6 Witt C., Dobermann A., Abdulrachman S., Gines H., Wang G., Nagarajan R., Satawatananont S., Son T., Tan P., Van Tiem L., Simbahan G., and Olk D., 1999, Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia, Field Crops Research, 63: 113-138. https://doi.org/10.1016/S0378-4290(99)00031-3 Xin W., Wang J., Li J., Zhao H., Liu H., Zheng H., Yang L., Wang C., Yang F., Chen J., and Zou D., 2021, Candidate gene analysis for nitrogen absorption and utilization in japonica rice at the seedling stage based on a genome-wide association study, Frontiers in Plant Science, 12: 670861. https://doi.org/10.3389/fpls.2021.670861 Xu H., Zhang H., Xu Y., Li C., Liu X., Wu T., Zong L., Jiang D., Chen G., and Gao Z., 2025, Overexpressed phosphoenolpyruvate carboxykinase 2 (PCK2) from maize in rice enhances tolerance to low nitrogen stress, Plant Growth Regulation, 105(1): 257-272. https://doi.org/10.1007/s10725-024-01224-z Yu J., Xuan W., Tian Y., Fan L., Sun J., Tang W., Chen G., Wang B., Liu Y., Wu W., Liu X., Jiang X., Zhou C., Dai Z., Xu D., Wang C., and Wan J., 2020, Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice, Plant Biotechnology Journal, 19: 167-176. https://doi.org/10.1111/pbi.13450 Zhang Y., Cai H., You E., Qiao X., Gao Z., and Chen G., 2024, Physiological response to low-nitrogen stress and comprehensive evaluation in four rice varieties, Photosynthetica, 62: 252-262. https://doi.org/10.32615/ps.2024.028 Zhang Y., Tan L., Zhu Z., Yuan L., Xie D., and Sun C., 2015, TOND1 confers tolerance to nitrogen deficiency in rice, The Plant Journal, 81: 367-376. https://doi.org/10.1111/tpj.12736
RkJQdWJsaXNoZXIy MjQ4ODYzNA==