Molecular Soil Biology 2025, Vol.16, No.2, 91-102 http://bioscipublisher.com/index.php/msb 100 Kimutai C., Gowda M., and Kiplagat O., 2021, Trait-QTL-heritability of grain yield and other agronomic traits under low nitrogen conditions in bi-parental maize populations, International Journal of Biological and Pharmaceutical Sciences Archive, 2(1): 96-116. https://doi.org/10.53771/ijbpsa.2021.2.1.0072 Lee S., 2021. Recent advances on nitrogen use efficiency in rice, Agronomy, 11: 753. https://doi.org/10.3390/AGRONOMY11040753 Lestari A. P., Sopandie D., and Aswidinnoor H., 2019a, Estimation for stress tolerance indices of rice genotypes in low nitrogen condition, Thai Journal of Agricultural Science, 52(4): 180-190. Lestari A., Suwarno S., Trikoesoemaningtyas T., Sopandie D., and Aswidinnoor H., 2019b, The tolerance and yield components of rice breeding lines selected under low and optimum nitrogen conditions, Indonesian Journal of Agricultural Science, 20(2): 61-68. https://doi.org/10.21082/ijas.v20n2.2019.p61-68 Li J., Xin W., Wang W., Zhao S., Xu L., Jiang X., Duan Y., Zheng H., Yang L., Liu H., Jia Y., Zou D., and Wang J., 2022a., Mapping of candidate genes in response to low nitrogen in rice seedlings, Rice, 15(1): 51. https://doi.org/10.1186/s12284-022-00597-x Li Q., Lu X., Wang C., Shen L., Dai L., He J., Yang L., Li P., Hong Y., Zhang Q., Dong G., Hu J., Zhang G., Ren D., Gao Z., Guo L., Qian Q., Zhu L., and Zeng D., 2022b, Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogen-deficiency tolerance in rice., The Crop Journal, 10(4): 942-951. https://doi.org/10.1016/j.cj.2021.12.006 Lian X., Xing Y., Yan H., Xu C., Li X., and Zhang Q., 2005, QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid, Theoretical and Applied Genetics, 112: 85-96. https://doi.org/10.1007/s00122-005-0108-y Liu Y., Wang H., Jiang Z., Wang W., Xu R., Wang Q., Zhang Z., Li A., Liang Y., Ou S., Liu X., Cao S., Tong H., Wang Y., Zhou F., Liao H., Hu B., and Chu C., 2021, Genomic basis of geographical adaptation to soil nitrogen in rice, Nature, 590: 600-605. https://doi.org/10.1038/s41586-020-03091-w Makinde S., Badu-Apraku B., Ariyo O., and Porbeni J., 2023, Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen, PLOS ONE, 18(2): e0280814. https://doi.org/10.1371/journal.pone.0280814 Mishra S., and Kar M., 2020, Biochemical performance of some Sub1 rice (Oryza sativa) genotypes under submergence stress in Odisha, International Journal of Chemical Studies, 8(4): 1709-1716. https://doi.org/10.22271/CHEMI.2021.V9.I2L.11922 Mohapatra S., Panda A., Bastia A., Mukherjee A., Sanghamitra P., Meher J., Mohanty S., and Pradhan S., 2021, Development of submergence-tolerant, bacterial blight-resistant, and high-yielding near isogenic lines of popular variety, ‘Swarna’ through marker-assisted breeding approach, Frontiers in Plant Science, 12: 672618. https://doi.org/10.3389/fpls.2021.672618 Neeraja C., Neeraja C., Maghirang-Rodriguez R., Pamplona A., Heuer S., Collard B., Septiningsih E., Vergara G., Sanchez D., Xu K., Ismail A., and Mackill D., 2007, A marker-assisted backcross approach for developing submergence-tolerant rice cultivars, Theoretical and Applied Genetics, 115: 767-776. https://doi.org/10.1007/s00122-007-0607-0 Neuweiler J., Trini J., Maurer H., and Würschum T., 2021, Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale? TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 135: 993-1009. https://doi.org/10.1007/s00122-021-04012-9 Nischal L., Mohsin M., Khan I., Kardam H., Wadhwa A., Abrol Y., Iqbal M., and Ahmad A., 2012, Identification and comparative analysis of micrornas associated with low-N tolerance in rice genotypes, PLoS ONE, 7(12): e50261. https://doi.org/10.1371/journal.pone.0050261 Patroti P., Vishalakshi B., Umakanth B., Suresh J., Senguttuvel P., and Madhav M., 2019. Marker-assisted pyramiding of major blast resistance genes in Swarna-Sub1, an elite rice variety (Oryza sativa L.). Euphytica, 215(11): 179. https://doi.org/10.1007/s10681-019-2487-1 Qi Z., Ling F., Jia D., Cui J., Zhang Z., Xu C., Yu L., Guan C., Wang Y., Zhang M., and Dou J., 2023, Effects of low nitrogen on seedling growth, photosynthetic characteristics and antioxidant system of rice varieties with different nitrogen efficiencies, Scientific Reports, 13(1): 19780. https://doi.org/10.1038/s41598-023-47260-z Qi Z., Xu C., Tang R., Zhang Q., Sun W., Guan C., Wang Y., Zhang M., Ding J., Zhang Y., Yang H., Yang Y., Liu X., Zhang Z., and Ling F., 2025. Response of Photosynthesis and Chlorophyll Fluorescence to Nitrogen Changes in Rice with Different Nitrogen Use Efficiencies. Plants, 14(10): 1465. https://doi.org/10.3390/plants14101465 Raghu P., Veettil P., and Das S., 2022, Smallholder adaptation to flood risks: Adoption and impact of Swarna-Sub1 in eastern India, Environmental Challenges, 7: 100480. https://doi.org/10.1016/j.envc.2022.100480 Ranjan R., and Yadav R., 2020, Genetics analysis of nitrogen use efficiency component traits under nitrogen-limiting environment, Cereal Research Communications, 48: 431-439. https://doi.org/10.1007/s42976-020-00063-8
RkJQdWJsaXNoZXIy MjQ4ODYzNA==