Molecular Soil Biology 2025, Vol.16, No.2, 91-102 http://bioscipublisher.com/index.php/msb 99 Amegbor I., Abe A., Adjebeng-Danquah J., and Adu G., 2022, Genetic analysis and yield assessment of maize hybrids under low and optimal nitrogen environments, Heliyon, 8(3): e09052. https://doi.org/10.1016/j.heliyon.2022.e09052 Badu-Apraku B., and Fakorede M., 2017, Breeding for tolerance to low soil nitrogen, in advances in genetic enhancement of early and extra-early maize for Sub-Saharan Africa, Cham: Springer International Publishing, pp.359-378. https://doi.org/10.1007/978-3-319-64852-1_13 Bänziger M., Betrán F., and Lafitte H., 1997, Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments, Crop Science, 37: 1103-1109. https://doi.org/10.2135/CROPSCI1997.0011183X003700040012X Begho T., Glenk K., Anik A., and Eory V., 2022, A systematic review of factors that influence farmers' adoption of sustainable crop farming practices: Lessons for sustainable nitrogen management in South Asia, Journal of Sustainable Agriculture and Environment, 1(2): 149-160. https://doi.org/10.1002/sae2.12016 Bhowmick M., Dhara M., Singh S., Dar M., and Singh U., 2014, Improved management options for submergence-tolerant (Sub1) rice genotype in flood-prone rainfed lowlands of west bengal, American Journal of Plant Sciences, 5: 14-23. https://doi.org/10.4236/AJPS.2014.51003 Castro-Pacheco S., Rabekijana R., Andriamiarana M., Raveloson H., Rakotomalala J., Ramanantsoanirina A., Garin V., Grenier C., and Brocke K., 2024., Participatory Plant Breeding to develop biofortified upland rice for marginal environments, Experimental Agriculture, 60: e26. https://doi.org/10.1017/S0014479724000218 Chen Z., Li L., Halford N., Xu H., Huang L., Gao R., Lu R., and Liu C., 2022, Advances in barley breeding for improving nitrogen use efficiency, Agronomy, 12(7): 1682. https://doi.org/10.3390/agronomy12071682 Cormier F., Foulkes J., Hirel B., Gouache D., Moënne-Loccoz Y., and Gouis L., 2016, Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivumL.), Plant Breeding, 135: 255-278. https://doi.org/10.1111/PBR.12371 Dar M., Chakravorty R., Waza S., Sharma M., Zaidi N., Singh A., Singh U., and Ismail A., 2017, Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security, Food Security, 9: 711-722. https://doi.org/10.1007/s12571-017-0696-9 Dar M., De Janvry A., Emerick K., Raitzer D., and Sadoulet E., 2013, Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups, Scientific Reports, 3(1): 3315. https://doi.org/10.1038/srep03315 Ertiro B., Labuschagne M., Olsen M., Das B., Prasanna B., and Gowda M., 2020, Genetic dissection of nitrogen use efficiency in tropical maize through genome-wide association and genomic prediction, Frontiers in Plant Science, 11: 474. https://doi.org/10.3389/fpls.2020.00474 Feng B., Chen K., Cui Y., Wu Z., Zheng T., Zhu Y., Ali J., Wang B., Xu J., Zhang W., and Li Z., 2018, Genetic dissection and simultaneous improvement of drought and low nitrogen tolerances by designed QTL pyramiding in rice, Frontiers in Plant Science, 9: 306. https://doi.org/10.3389/fpls.2018.00306 Fiaz S., Wang X., Khan S., Ahmar S., Noor M., Riaz A., Ali K., Abbas F., Mora-Poblete F., Figueroa C., and Alharthi B., 2021, Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review, GM Crops & Food, 12: 627-646. https://doi.org/10.1080/21645698.2021.1921545 Garoma B., Alamirew S., and Chibsa T., 2021, Review on genetic and breeding for low -N tolerance in maize, Journal of Natural Sciences Research, 12: 26-31. https://doi.org/10.7176/jnsr/12-1-04 Hu B., Li X., Wan Y., Qiu Z., Nie Y., and Xie J., 2015, Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from Dongxiang wild rice (Oryza rufipogon Griff), Ying yong sheng tai xue bao = The journal of applied ecology, 26(8): 2346-2352. Hu B., Wang W., Chen J., Liu Y., and Chu C., 2022, Genetic improvement toward nitrogen-use efficiency in rice: lessons and perspectives, Molecular plant, 16(1): 64-74. https://doi.org/10.1016/j.molp.2022.11.007 Huang M., Liu Y., Chen J., and Cao F., 2022, The difference method is not necessarily reliable for comparing the nitrogen use efficiency of hybrid rice cultivars with different tolerance to low nitrogen conditions, Crop and Environment, 1(3): 168-172. https://doi.org/10.1016/j.crope.2022.08.003 Jyoti S., Singh G., Pradhan A., Tarpley L., Septiningsih E., and Talukder S., 2024, Rice breeding for low input agriculture, Frontiers in Plant Science, 15: 1408356. https://doi.org/10.3389/fpls.2024.1408356 Kamara M., Mansour E., Khalaf A., Eid M., Hassanin A., Abdelghany A., Kheir A., Galal A., Behiry S., Silvar C., and El-Hendawy S., 2024, Molecular diversity and combining ability in newly developed maize inbred lines under low-nitrogen conditions, Life, 14(5): 641. https://doi.org/10.3390/life14050641 Kasemsap P., and Bloom A., 2022, Breeding for higher yields of wheat and rice through modifying nitrogen metabolism, Plants, 12(1): 85. https://doi.org/10.3390/plants12010085
RkJQdWJsaXNoZXIy MjQ4ODYzNA==