Molecular Soil Biology 2025, Vol.16, No.1, 45-54 http://bioscipublisher.com/index.php/msb 53 Hakim S., Naqqash T., Nawaz M., Laraib I., Siddique M., Zia R., Mirza M., and Imran A., 2021, Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability, Frontiers in Sustainable Food Systems, 5: 617157. https://doi.org/10.3389/fsufs.2021.617157 Huang J., Li X., Zhan X., Pan S., Pan C., Li J., Fan S., Zhang L., Du K., Du Z., Zhang J., Huang H., Li J., Zhang H., and Qin Z., 2024a, AStreptomyces species from the ginseng rhizosphere exhibits biocontrol potential, Plant Physiology, 194(4): 2709-2723. https://doi.org/10.1093/plphys/kiae006 Huang J., Wu Y., Gao Q., Li X., Zeng Y., Guo Y., Zhang H., and Qin Z., 2024b, Metagenomic exploration of the rhizosphere soil microbial community and their significance in facilitating the development of wild-simulated ginseng, Applied and Environmental Microbiology, 90(3): e02335-23. https://doi.org/10.1128/aem.02335-23 Ji W., Leng X., Jin Z., and Li H., 2018, Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69: 135-146. https://doi.org/10.1080/09064710.2018.1519082 Jing H., 2024, Advances in ginseng tissue culture research, Transactions on Materials, Biotechnology and Life Sciences, 6: 58-64. https://doi.org/10.62051/y0rw9733 Kong Z., and Liu H., 2022, Modification of rhizosphere microbial communities: a possible mechanism of plant growth promoting rhizobacteria enhancing plant growth and fitness, Frontiers in Plant Science, 13: 920813. https://doi.org/10.3389/fpls.2022.920813 Liu C., Xia R., Tang M., Chen X., Zhong B., Liu X., Bian R., Yang L., Zheng J., Cheng K., Zhang X., Drosos M., Li L., Shan S., Joseph S., and Pan G., 2022, Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China, Horticulture Research, 9: uhac108. https://doi.org/10.1093/hr/uhac108 Liu C., Xia R., Tang M., Liu X., Bian R., Yang L., Zheng J., Cheng K., Zhang X., Drosos M., Li L., Shan S., Joseph S., and Pan G., 2022a, More microbial manipulation and plant defense than soil fertility for biochar in food production: a field experiment of replanted ginseng with different biochars, Frontiers in Microbiology, 13: 1065313. https://doi.org/10.3389/fmicb.2022.1065313 Liu S., Zhao J., Liu Y., Li N., Wang Z., Wang X., Liu X., Jiang L., Liu B., Fu X., Li X., and Li L., 2021, High chromosomal stability and immortalized totipotency characterize long-term tissue cultures of Chinese ginseng (Panax ginseng), Genes, 12(4): 514. https://doi.org/10.3390/genes12040514 Liu S.S., and Gao F.M., 2024, Microbial symbionts: molecular codes and ecological significance of tree-rhizosphere microbe interactions, Molecular Microbiology Research, 14(4): 171-180. Nhung N., Trung K., and Khanh T., 2024, Current advances in tissue culture of vietnamese ginseng (Panax vietnamensis Ha et Grushv). Natural Product Communications, 19(8): 1934578X241279712. https://doi.org/10.1177/1934578x241279712 Ning L., Cai S., Hai S., Liu Z., Guan Y., Wu L., Zhang L., Pan X., Zhang Z., Yayu Z., and Zhang B., 2020, Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime, Geoderma, 363: 114155. https://doi.org/10.1016/j.geoderma.2019.114155 Pausch J., Holz M., Zhu B., and Cheng W., 2024, Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling, Plant, Cell & Environment, 47(6): 1987-1996. https://doi.org/10.1111/pce.14858 Pii Y., Mimmo T., Tomasi N., Terzano R., Cesco S., and Crecchio C., 2015, Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. a review, Biology and Fertility of Soils, 51: 403-415. https://doi.org/10.1007/s00374-015-0996-1 Qiang B., Miao J., Phillips N., Wei K., and Gao Y., 2020, Recent advances in the tissue culture of American ginseng (Panax quinquefolius), Chemistry & Biodiversity, 17. https://doi.org/10.1002/cbdv.202000366 Sun J., Luo H., Yu Q., Kou B., Jiang Y., Weng L., and Xiao C., 2022, Optimal NPK fertilizer combination increases Panax ginseng yield and quality and affects diversity and structure of rhizosphere fungal communities, Frontiers in Microbiology, 13: 919434. https://doi.org/10.3389/fmicb.2022.919434 Sun J., Yang J., Zhao S., Yu Q., Weng L., and Xiao C., 2023, Root exudates influence rhizosphere fungi and thereby synergistically regulate Panax ginseng yield and quality, Frontiers in Microbiology, 14: 1194224. https://doi.org/10.3389/fmicb.2023.1194224 Wang Q., Sun H., Li M., Xu C., and Zhang Y., 2020, Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode, Frontiers in Plant Science, 11: 563240. https://doi.org/10.3389/fpls.2020.563240 Wang X., Guo X., Hou L., Zhang J., Hu J., Zhang F., Mao J., Wang Z., Zhang C., Han J., Zhu Y., Liu C., Sun J., and Shan C., 2022b, A comparative study of bacterial diversity based on effects of three different shade shed types in the rhizosphere of Panax quiquefolium L., PeerJ, 10: e12807. https://doi.org/10.7717/peerj.12807
RkJQdWJsaXNoZXIy MjQ4ODYzNA==