Molecular Soil Biology 2025, Vol.16, No.1, 27-36 http://bioscipublisher.com/index.php/msb 36 Li Y., Gao X., Tenuta M., Gui D., Li X., Xue W., and Zeng F., 2020, Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China, The Science of the Total Environment, 748: 141543. https://doi.org/10.1016/j.scitotenv.2020.141543 Liang J., He Z., and Shi W., 2020, Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China, Agricultural Water Management, 240: 106277. https://doi.org/10.1016/j.agwat.2020.106277 Mauget S., Marek G., Adhikari P., Leiker G., Mahan J., Payton P., and Ale S., 2020, Optimizing dryland crop management to regional climate via simulation, Part I: US Southern High Plains cotton production. Frontiers in Sustainable Food Systems, 3: 120. https://doi.org/10.3389/fsufs.2019.00120 Mishra N., Sun L., Zhu X., Smith J., Srivastava A., Yang X., Pehlivan N., Esmaeili N., Luo H., Shen G., Jones D., Auld D., Burke J., Payton P., and Zhang H., 2017, Overexpression of the Rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions, Plant and Cell Physiology, 58: 735-746. https://doi.org/10.1093/pcp/pcx032 Neupane J., Guo W., West C., Zhang F., and Lin Z., 2021, Effects of irrigation rates on cotton yield as affected by soil physical properties and topography in the southern high plains, PLoS ONE, 16(10): e0258496. https://doi.org/10.1371/journal.pone.0258496 Prasad D., Singla K., Baggan V., and Ma A., 2019, System model for smart precision farming for high crop yielding, Journal of Computational and Theoretical Nanoscience, 16(10): 4406-4411. https://doi.org/10.1166/jctn.2019.8533 Shareef M., Gui D., Zeng F., Waqas M., Ahmed Z., Zhang B., Iqbal H., and Xue J., 2019, Nitrogen leaching, recovery efficiency, and cotton productivity assessments on desert-sandy soil under various application methods, Agricultural Water Management, 223: 105716. https://doi.org/10.1016/J.AGWAT.2019.105716 Shareef M., Gui D., Zeng F., Waqas M., Zhang B., and Iqbal H., 2018, Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China, Agricultural Water Management, 206: 1-10. https://doi.org/10.1016/J.AGWAT.2018.04.042 Sharma A., Jain A., Gupta P., and Chowdary V., 2021, Machine learning applications for precision agriculture: a comprehensive review, IEEE Access, 9: 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415 Sun F., Ma J., Shi W., and Yang Y., 2023a, Genome-wide association analysis revealed genetic variation and candidate genes associated with the yield traits of upland cotton under drought conditions, Frontiers in Plant Science, 14: 1135302. https://doi.org/10.3389/fpls.2023.1135302 Sun F., Chen Q., Chen Q., Jiang M., and Qu Y., 2023b, Yield-based drought tolerance index evaluates the drought tolerance of cotton germplasm lines in the interaction of genotype-by-environment, PeerJ, 11: e14367. https://doi.org/10.7717/peerj.14367 Ullah A., Shakeel A., Ahmed H., Naeem M., Ali M., Shah A., Wang L., Jaremko M., Abdelsalam N., Ghareeb R., and Hasan M., 2022, Genetic basis and principal component analysis in cotton (Gossypium hirsutumL.) grown under water deficit condition, Frontiers in Plant Science, 13: 981369. https://doi.org/10.3389/fpls.2022.981369 Wu X., Wang Z., Guo L., Liu J., Dhital Y., Zhu Y., Song L., and Wen Y., 2023, Timing and water temperature of drip irrigation regulate cotton growth and yield under film mulching in arid areas of Xinjiang, Journal of the Science of Food and Agriculture, 103(12): 5754-5769. https://doi.org/10.1002/jsfa.12648 Xia W., Zong J., Zheng K., Wang Y., Zhang D., Guo S., and Sun G., 2022, DgCspCgene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants, Frontiers in Plant Science, 13: 985900. https://doi.org/10.3389/fpls.2022.985900 Zhang D., Zhang Y., Sun L., Dai J., and Dong H., 2023, Mitigating salinity stress and improving cotton productivity with agronomic practices, Agronomy, 13(10): 2486. https://doi.org/10.3390/agronomy13102486 Zhang N., Tian L., Feng L., Xu W., Li Y., Xing F., Fan Z., Xiong S., Tang J., Li C., Li L., Ma Y., and Wang F., 2021. Boll characteristics and yield of cotton in relation to the canopy microclimate under varying plant densities in an arid area, PeerJ, 9: e12111. https://doi.org/10.7717/peerj.12111 Zuo W., Wu B., Wang Y., Xu S., Tian J., Jiu X., Dong H., and Zhang W., 2023, Optimal planting pattern of cotton is regulated by irrigation amount under mulch drip irrigation, Frontiers in Plant Science, 14: 1158329. https://doi.org/10.3389/fpls.2023.1158329
RkJQdWJsaXNoZXIy MjQ4ODYzNA==