Molecular Soil Biology 2025, Vol.16, No.1, 16-26 http://bioscipublisher.com/index.php/msb 25 Kumawat C., Kumar A., Parshad J., Sharma S., Patra A., Dogra P., Yadav G., Dadhich S., Verma R., and Kumawat G., 2022, Microbial diversity and adaptation under salt-affected soils: A review, Sustainability, 14(15): 9280. https://doi.org/10.3390/su14159280 Li K., Geng Y., Li Q., and Liu, C., 2021, Characterization of the microstructural properties of saline-alkali soils in the Yellow River Delta, China, Communications in Soil Science and Plant Analysis, 52: 1527-1543. https://doi.org/10.1080/00103624.2021.1885695 Liu Y., Qin Y., and Bai, Y., 2019, Reductionist synthetic community approaches in root microbiome research, Current Opinion in Microbiology, 49: 97-102. https://doi.org/10.1016/j.mib.2019.10.010 Lu P., Bainard L., Ma B., and Liu J., 2020, Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline-alkaline environment, Sci. Rep., 10: 19896. https://doi.org/10.1038/s41598-020-76978-3 Marín O., González B., and Poupin M., 2021, From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities, Front. Plant Sci., 12: 650609. https://doi.org/10.3389/fpls.2021.650609 Martins S., Pasche J., Silva H., Selten G., Savastano N., Abreu L., Bais H., Garrett K., Kraisitudomsook N., Pieterse C., and Cernava T., 2023, The use of synthetic microbial communities (SynComs) to improve plant health, Phytopathology, 113(8): 1369-1379. https://doi.org/10.1094/PHYTO-01-23-0016-IA Pradhan S., Tyagi R., and Sharma S., 2022, Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges, Journal of Applied Microbiology, 133: 2742-2759. https://doi.org/10.1111/jam.15799 Qin Y., Druzhinina I., Pan X., and Yuan Z., 2016, Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture, Biotechnology advances, 34(7): 1245-1259. https://doi.org/10.1016/j.biotechadv.2016.08.005 Sai N., Devi A., and Balachandar D., 2022, Synthetic microbial community (SynCom) for sustainable agriculture, Indian Journal of Plant Genetic Resources, 35(3): 351-354. https://doi.org/10.5958/0976-1926.2022.00098.5 Santini T., Malcolm L., Tyson G., and Warren L., 2016, pH and organic carbon dose rates control microbially driven bioremediation efficacy in Alkaline Bauxite residue, Environmental Science and Technology, 50(20): 11164-11173. https://doi.org/10.1021/ACS.EST.6B01973 Sharma B., and Shukla P., 2020, Designing synthetic microbial communities for effectual bioremediation: A review, Biocatalysis and Biotransformation, 38: 405-414. https://doi.org/10.1080/10242422.2020.1813727 Shayanthan A., Ordoñez P., and Oresnik I., 2022, The role of synthetic microbial communities (SynCom) in sustainable agriculture, Front. Agron., 4: 896307. https://doi.org/10.3389/fagro.2022.896307 Shi S., Tian L., Nasir F., Bahadur A., Batool A., Luo S., Yang F., Wang Z., and Tian C., 2019, Response of microbial communities and enzyme activities to amendments in saline-alkaline soils, Applied Soil Ecology, 135: 16-24. https://doi.org/10.1016/J.APSOIL.2018.11.003 Souza R., Armanhi J., and Arruda P., 2020, From microbiome to traits: designing synthetic microbial communities for improved crop resiliency, Front. Plant Sci., 11: 1179. https://doi.org/10.3389/fpls.2020.01179 Šovljanski O., Tomić A., Pezo L., and Markov S., 2020, Temperature and pH growth profile prediction of newly isolated bacterial strains from alkaline soils, Journal of the Science of Food and Agriculture, 100(3): 1155-1163. https://doi.org/10.1002/jsfa.10124 Wang L., Wang X., Wu H., Wang H., Wang Y., and Lu Z., 2023, Metabolic modeling of synthetic microbial communities for bioremediation, Critical Reviews in Environmental Science and Technology, 53: 2092-2111. https://doi.org/10.1080/10643389.2023.2212569 Wang M., Chen S., Chen L., and Wang D., 2019, Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils, Environmental Pollution, 252(Pt B): 1609-1621. https://doi.org/10.1016/j.envpol.2019.06.082 Wang Y., and Bao G., 2021, Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau, Sci. Rep., 12: 3365. https://doi.org/10.1038/s41598-022-07311-3 Wang Z., Tan W., Yang D., Zhang K., Zhao L., Xie Z., Xu T., Zhao Y., Wang X., Pan X., and Zhang D., 2020, Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization, The Science of the total environment, 755(Pt 1): 142511. https://doi.org/10.1016/j.scitotenv.2020.142511 Yang S., Hao X., Xu Y., Yang J., and Su D., 2022, Meta-analysis of the effect of saline-alkali land improvement and utilization on soil organic carbon, Life, 12(11): 1870. https://doi.org/10.3390/life12111870
RkJQdWJsaXNoZXIy MjQ4ODYzNA==