MSB_2024v15n5

Molecular Soil Biology 2024, Vol.15, No.5, 205-215 http://bioscipublisher.com/index.php/msb 215 Sou H.D., Masumori M., Yamanoshita T., and Tange T., 2021, Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions, Scientific Reports, 11(1): 4520. https://doi.org/10.1038/s41598-021-84183-z Sobrino-Plata J., Cano F.J., Aranda I., Fernández De Simón M.B., and Rodríguez-Calcerrada J., 2024, The impact of drought on plant metabolism in Quercus species - from initial response to recovery, Monitoring Forest Damage with Metabolomics Methods. https://doi.org/10.1002/9781119868750.ch10 Takahashi F., Kuromori T., Sato H., and Shinozaki K., 2018, Regulatory gene networks in drought stress responses and resistance in plants, Advances in experimental medicine and biology, 1081: 189-214. https://doi.org/10.1007/978-981-13-1244-1_11 Takahashi F., Kuromori T., Urano K., Yamaguchi-Shinozaki K., and Shinozaki K., 2020, Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication, Frontiers in Plant Science, 11: 556972. https://doi.org/10.3389/fpls.2020.556972 Wahab A., Abdi G., Saleem M.H., Ali B., Ullah S., Shah W., Mumtaz S., Yasin G., Muresan C.C., and Marc R.A., 2022, Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review, Plants, 11(13): 1620. https://doi.org/10.3390/plants11131620 Wang R., He N., Li S., Xu L., and Li M., 2021, Variation and adaptation of leaf water content among species, communities, and biomes, Environmental Research Letters, 16(12): 124038. https://doi.org/10.1088/1748-9326/ac38da Wang X., Wu Z., Zhou Q., Wang X., Song S., and Dong S., 2022, Physiological response of soybean plants to water deficit, Frontiers in Plant Science, 12: 809692. https://doi.org/10.3389/fpls.2021.809692 Wu J., Wang J., Hui W., Zhao F., Wang P., Su C., and Gong W., 2022, Physiology of plant responses to water stress and related genes: a review, Forests, 13(2): 324. https://doi.org/10.3390/f13020324 Xiong Q., Cao C., Shen T., Zhong L., He H., and Chen X., 2019, Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress, Biochimicaet Biophysica Acta (BBA) - Proteins and Proteomics, 1867(3): 237-247. https://doi.org/10.1016/j.bbapap.2019.01.001 Xin L., Zheng H., Yang Z., Guo J., Liu T., Sun L., Xiao Y., Yang J., Yang Q., and Guo L., 2018, Physiological and proteomic analysis of maize seedling response to water deficiency stress, Journal of Plant Physiology, 228: 29-38. https://doi.org/10.1016/j.jplph.2018.05.005 Yang X., Lu M., Wang Y., Wang Y., Liu Z., and Chen S., 2021, Response mechanism of plants to drought stress, Horticulturae, 7(3): 50. https://doi.org/10.3390/horticulturae7030050 Yavas I., Jamal M.A., Ul Din K., Ali S., Hussain S., and Farooq M., 2023, Drought-induced changes in leaf morphology and anatomy: overview, implications and perspectives, Polish Journal of Environmental Studies, 33(2): 1517-1530. https://doi.org/10.15244/pjoes/174476 Yari Kamrani Y., Shomali A., Aliniaeifard S., Lastochkina O., Moosavi-Nezhad M., Hajinajaf N., and Talar U., 2022, Regulatory role of circadian clocks on ABA production and signaling, stomatal responses, and water-use efficiency under water-deficit conditions, Cells, 11(7): 1154. https://doi.org/10.3390/cells11071154 Zhang H., Sun X., and Dai M., 2022, Improving crop drought resistance with plant growth regulators and rhizobacteria: mechanisms, applications, and perspectives, Plant Communications, 3(1): 100228. https://doi.org/10.1016/j.xplc.2021.100228 Zhou C., Yu S., Zhang H., and Li F., 2023, Physiological and biochemical responses of Isatis indigotica to deficit irrigation in a cold and arid environment, Frontiers in Plant Science, 13: 1094158. https://doi.org/10.3389/fpls.2022.1094158

RkJQdWJsaXNoZXIy MjQ4ODYzMg==