Molecular Soil Biology 2024, Vol.15, No.5, 205-215 http://bioscipublisher.com/index.php/msb 214 Li F., Guo D., Gao X., and Zhao X., 2021, Water deficit modulates the CO2 fertilization effect on plant gas exchange and leaf-level water use efficiency: a meta-analysis, Frontiers in Plant Science, 12: 775477. https://doi.org/10.3389/fpls.2021.775477 Liu H., Able A.J., and Able J.A., 2020, Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the water-deficit and heat stress response network in Durum wheat, International Journal of Molecular Sciences, 21(17): 6017. https://doi.org/10.3390/ijms21176017 Lobato S.M.D.S., Dos Santos L.R., Da Silva B.R.S., Melo W.D.O., and Lobato A.K.D.S., 2021, Protective mechanism triggered by pigeonpea plants exposed to water deficit: modifications linked to paraheliotropism, stomatal characteristics and antioxidant enzymes, Journal of Plant Growth Regulation, 40(1): 20-36. https://doi.org/10.1007/s00344-020-10077-5 Luo Q., Ma Y., Chen Z., Xie H., Wang Y., Zhou L., and Ma Y., 2022, Biochemical responses of hairgrass (Deschampsia caespitosa) to hydrological change, Frontiers in Plant Science, 13: 987845. https://doi.org/10.3389/fpls.2022.987845 Lv Q., Li X., Jin X., Sun Y., Wu Y., Wang W., and Huang J., 2022, Rice OsPUB16 modulates the ‘SAPK9-OsMADS23-OsAOC’ pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis, PLOS Genetics, 18(11): e1010520. https://doi.org/10.1371/journal.pgen.1010520 Marques I., and Hu H., 2024, Molecular insight of plants response to drought stress: perspectives and new insights towards food security, International Journal of Molecular Sciences, 25(9): 4988. https://doi.org/10.3390/ijms25094988 Martins G.S., Freitas N.C., Máximo W.P.F., and Paiva L.V., 2018, Gene expression in two contrasting hybrid clones of Eucalyptus camaldulensis x Eucalyptus urophylla grown under water deficit conditions, Journal of Plant Physiology, 229: 122-131. https://doi.org/10.1016/j.jplph.2018.07.007 Mullet J.E., and Whitsitt M.S., 1996, Plant cellular responses to water deficit, Plant Growth Regulation, 20(2): 119-124. https://doi.org/10.1007/BF00024008 Nalina M., Saroja S., Chakravarthi M., Rajkumar R., Radhakrishnan B., and Chandrashekara K.N., 2021, Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition, Acta Physiologiae Plantarum, 43(1): 10. https://doi.org/10.1007/s11738-020-03174-1 Nosalewicz A., Siecińska J., Kondracka K., and Nosalewicz M., 2018, The functioning of Festuca arundinacea and Lolium perenne under drought is improved to a different extend by the previous exposure to water deficit, Environmental and Experimental Botany, 156: 271-278. https://doi.org/10.1016/j.envexpbot.2018.09.016 Palhares Neto L., De Souza L. M., De Morais M.B., Arruda E., De Figueiredo R.C.B.Q., De Albuquerque C.C., and Ulisses C., 2020, Morphophysiological and biochemical responses of Lippia grata Schauer (Verbenaceae) to water deficit, Journal of Plant Growth Regulation, 39(1): 26-40. https://doi.org/10.1007/s00344-019-09961-6 Rahimi Y., Ingvarsson P.K., Bihamta M.R., Alipour H., Taleei A., and Khoshnoodi Jabar Abadi S., 2021, Characterization of dynamic regulatory gene and protein networks in wheat roots upon perceiving water deficit through comparative transcriptomics survey, Frontiers in Plant Science, 12: 710867. https://doi.org/10.3389/fpls.2021.710867 Ranjith P., and Srinivasa Rao M., 2021, Breeding for drought resistance, Plant Breeding-Current and Future Views. https://doi.org/10.5772/intechopen.97276 Raza A., Mubarik M.S., Sharif R., Habib M., Jabeen W., Zhang C., Chen H., Chen Z., Siddique K.H.M., Zhuang W., and Varshney R.K., 2023, Developing drought-smart, ready-to-grow future crops, The Plant Genome, 16(1): e20279. https://doi.org/10.1002/tpg2.20279 Sadiqi S.S.J., Hong E.M., Nam W.H., and Kim T., 2022, Review: an integrated framework for understanding ecological drought and drought resistance, Science of The Total Environment, 846: 157477. https://doi.org/10.1016/j.scitotenv.2022.157477 Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., and Battaglia M.L., 2021, Drought stress impacts on plants and different approaches to alleviate its adverse effects, Plants, 10(2): 259. https://doi.org/10.3390/plants10020259 Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R., and Shao M.A., 2009, Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco environment in arid regions of the globe, Critical Reviews in Biotechnology, 29(2): 131-151. https://doi.org/10.1080/07388550902869792 Shao H.B., Chu L.Y., Jaleel C.A., and Zhao C.X., 2008, Water-deficit stress-induced anatomical changes in higher plants, Comptes Rendus. Biologies, 331(3): 215-225. https://doi.org/10.1016/j.crvi.2008.01.002 Sun Y., Wang C., Chen H.Y.H., and Ruan H., 2020, Response of plants to water stress: a meta-analysis, Frontiers in Plant Science, 11: 978. https://doi.org/10.3389/fpls.2020.00978
RkJQdWJsaXNoZXIy MjQ4ODYzMg==