MSB_2024v15n5

Molecular Soil Biology 2024, Vol.15, No.5, 205-215 http://bioscipublisher.com/index.php/msb 213 Buckley T.N., 2019, How do stomata respond to water status? New Phytologist, 224(1): 21-36. https://doi.org/10.1111/nph.15899 Cui X., Wang B., Chen Z., Guo J., Zhang T., Zhang W., and Shi L., 2023, Comprehensive physiological, transcriptomic, and metabolomic analysis of the key metabolic pathways in millet seedling adaptation to drought stress, Physiologia Plantarum, 175(6): e14122. https://doi.org/10.1111/ppl.14122 Chaves M.M., 2004, Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture, Journal of Experimental Botany, 55(407): 2365-2384. https://doi.org/10.1093/jxb/erh269 Chitiyo S.T., Ncube B., Ndhlala A.R., and Tsvuura Z., 2021, Biochemical responses of Moringa oleifera Lam. plants to graded moisture deficit, South African Journal of Botany, 138: 41-49. https://doi.org/10.1016/j.sajb.2020.12.003 De María N., Guevara M.Á., Perdiguero P., Vélez M.D., Cabezas J.A., López-Hinojosa M., Li Z., Díaz L.M., Pizarro A., Mancha J.A., Sterck L., Sánchez-Gómez D., Miguel C., Collada C., Díaz-Sala M. C., and Cervera M.T., 2020, Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms, Ecology and Evolution, 10(18): 9788-9807. https://doi.org/10.1002/ece3.6613 Falahi H., Sharifi M., Maivan H.Z., and Chashmi N.A., 2018, Phenylethanoid glycosides accumulation in roots of Scrophularia striata as a response to water stress, Environmental and Experimental Botany, 147: 13-21. https://doi.org/10.1016/j.envexpbot.2017.11.003 Farooq M., Wahid A., Kobayashi N., Fujita D., and Basra S.M.A., 2009, Plant drought stress: effects, mechanisms and management, Agronomy for Sustainable Development, 29(1): 185-212. https://doi.org/10.1051/agro:2008021 Ghadirnezhad Shiade S.R., Fathi A., Taghavi Ghasemkheili F., Amiri E., and Pessarakli M., 2023, Plants’ responses under drought stress conditions: effects of strategic management approaches—a review, Journal of Plant Nutrition, 46(9): 2198-2230. https://doi.org/10.1080/01904167.2022.2105720 Giorio P., Guida G., Mistretta C., Sellami M.H., Oliva M., Punzo P., Iovieno P., Arena C., De Maio A., Grillo S., and Albrizio R., 2018, Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces, Plant Biology, 20(6): 995-1004. https://doi.org/10.1111/plb.12891 Gupta A., Rico-Medina A., and Caño-Delgado A.I., 2020, The physiology of plant responses to drought, Science, 368(6488): 266-269. https://doi.org/10.1126/science.aaz7614 Kaur H., Kohli S.K., Khanna K., and Bhardwaj R., 2021, Scrutinizing the impact of water deficit in plants: transcriptional regulation, signaling, photosynthetic efficacy, and management, Physiologia Plantarum, 172(2): 935-962. https://doi.org/10.1111/ppl.13389 Kaya C., Uğurlar F., and Adamakis I.D.S., 2024, Epigenetic modifications of hormonal signaling pathways in plant drought response and tolerance for sustainable food security, International Journal of Molecular Sciences, 25(15): 8229. https://doi.org/10.3390/ijms25158229 Kebert M., Vuksanović V., Stefels J., Bojović M., Horák R., Kostić S., Kovačević B., Orlović S., Neri L., Magli M., and Rapparini F., 2022, Species-level differences in Osmoprotectants and Antioxidants contribute to stress tolerance of Quercus robur L., and Q. cerris L. seedlings under water deficit and high temperatures, Plants, 11(13): 1744. https://doi.org/10.3390/plants11131744 Khan M.A., Iqbal M., Akram M., Ahmad M., Hassan M.W., and Jamil M., 2013, Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review, Zemdirbyste-Agriculture, 100(3): 325-334. https://doi.org/10.13080/z-a.2013.100.042 Kou S., Gu Q., Duan L., Liu G., Yuan P., Li H., Wu Z., Liu W., Huang P., and Liu L., 2022, Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation, Journal of Plant Growth Regulation, 41(7): 2903-2917. https://doi.org/10.1007/s00344-021-10483-3 Kravic N., Babic V., Vukadinovic J., Ristic D., Dragicevic V., Mladenovic Drinic S., and Andjelkovic V., 2021, Alteration of metabolites accumulation in Maize inbreds leaf tissue under long-term water deficit, Biology, 10(8): 694. https://doi.org/10.3390/biology10080694 Kuppler J., and Kotowska M.M., 2021, A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit, Global Change Biology, 27(13): 3095-3108. https://doi.org/10.1111/gcb.15621 Lawson T., and Vialet-Chabrand S., 2019, Speedy stomata, photosynthesis and plant water use efficiency, New Phytologist, 221(1): 93-98. https://doi.org/10.1111/nph.15330 Leão A.P., Bittencourt C.B., Carvalho Da Silva T.L., Rodrigues Neto J.C., Braga Í.D.O., Vieira L.R., De Aquino Ribeiro J.A., Abdelnur P.V., De Sousa C.A.F., and Souza Júnior M.T., 2022, Insights from a Multi-Omics Integration (MOI) study in oil palm (Elaeis guineensis Jacq.) response to abiotic stresses: part two-drought, Plants, 11(20): 2786. https://doi.org/10.3390/plants11202786

RkJQdWJsaXNoZXIy MjQ4ODYzMg==