MSB_2024v15n4

Molecular Soil Biology 2024, Vol.15, No.4, 183-192 http://bioscipublisher.com/index.php/msb 192 Sanchis V., and Bourguet D., 2011, Bacillus thuringiensis: applications in agriculture and insect resistance management: a review, Agronomy for Sustainable Development, 28: 11-20. https://doi.org/10.1051/agro:2007054 Sanchis V., 2011, From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis: a review, Agronomy for Sustainable Development, 31: 217-231. https://doi.org/10.1051/agro/2010027 Schmidt J., Fester T., Schulz E., Michalzik B., Buscot F., and Gutknecht J., 2017, Effects of plant-symbiotic relationships on the living soil microbial community and microbial necromass in a long-term agro-ecosystem, The Science of the Total Environment, 581-582: 756-765. https://doi.org/10.1016/j.scitotenv.2017.01.005 Sim J., Drigo B., Doolette C., Vasileiadis S., Karpouzas D., and Lombi E., 2022, Impact of twenty pesticides on soil carbon microbial functions and community composition, Chemosphere, 307: 135820. https://doi.org/10.2139/ssrn.4124958 Tabashnik B.E., Fabrick J.A., and Carrière Y., 2023, Global patterns of insect resistance to transgenic Bt crops:the first 25 years, Journal of Economic Entomology, 116: 297-309. https://doi.org/10.1093/jee/toac183 Ullah M., and Dijkstra F., 2019, Fungicide and bactericide effects on carbon and nitrogen cycling in soils: a meta-analysis, Soil Systems, 3(2): 23. https://doi.org/10.3390/SOILSYSTEMS3020023 Wang Y., Zhang M., Li S., Li P., and Lang Z., 2022, Effects of insect-resistant maize HGK60 on community diversity of bacteria and fungi in rhizosphere soil, Plants, 11(21): 2824. https://doi.org/10.3390/plants11212824 Widdig M., Heintz-Buschart A., Schleuss P., Guhr A., Borer E., Seabloom E., and Spohn M., 2020, Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil, Soil Biology and Biochemistry, 151: 108041. https://doi.org/10.1016/j.soilbio.2020.108041 Wu N., Shi W., Liú W., Gao Z., Han L., and Wang X., 2021, Differential impact of Bt-transgenic rice plantings on bacterial community in three niches over consecutive years, Ecotoxicology and Environmental Safety, 223: 112569. https://doi.org/10.1016/j.ecoenv.2021.112569 Yasin S., Asghar H., Ahmad F., Zahir Z., and Waraich E., 2016, Impact of Bt-cotton on soil microbiological and biochemical attributes, Plant Production Science, 19: 458-467. https://doi.org/10.1080/1343943X.2016.1185637 Zhang T., Chen H., and Ruan H., 2018, Global negative effects of nitrogen deposition on soil microbes, The ISME Journal, 12: 1817-1825. https://doi.org/10.1038/s41396-018-0096-y Zhang X., Qiu Y., Gilliam F., Gillespie C., Tu C., Reberg-Horton S., and Hu S., 2022, Arbuscular mycorrhizae shift community composition of N-cycling microbes and suppress soil N2O emission, Environmental Science and Technology, 56(18): 13461-13472. https://doi.org/10.1021/acs.est.2c03816 Zhaolei L., Naishun B., Xueping C., Jun C., Manqiu X., Zhiping S., Ming N., and Changming F., 2018, Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities, Ecotoxicology and Environmental Safety, 152: 33-41. https://doi.org/10.1016/j.ecoenv.2017.12.054 Zwahlen C., Hilbeck A., and Nentwig W., 2007, Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates, Plant and Soil, 300: 245-257. https://doi.org/10.1007/s11104-007-9410-6

RkJQdWJsaXNoZXIy MjQ4ODYzMg==