Molecular Soil Biology 2024, Vol.15, No.4, 183-192 http://bioscipublisher.com/index.php/msb 191 Gomis-Cebolla J., and Berry C., 2023, Bacillus thuringiensis as a biofertilizer in crops and their implications in the control of phytopathogens and insect pests, Pest Management Science, 79(9): 2992-3001. https://doi.org/10.1002/ps.7560 Griffiths B., Caul S., Thompson J., Birch A., Scrimgeour C., Cortet J., Foggo A., Hackett C., and Krogh P., 2006, Soil microbial and faunal community responses to bt maize and insecticide in two soils, Journal of Environmental Quality, 35(3): 734-741. https://doi.org/10.2134/JEQ2005.0344 Helassa N., M'charek A., Quiquampoix H., Noinville S., Déjardin P., Frutos R., and Staunton S., 2011, Effects of physicochemical interactions and microbial activity on the persistence of Cry1Aa Bt (Bacillus thuringiensis) toxin in soil, Soil Biology and Biochemistry, 43: 1089-1097. https://doi.org/10.1016/J.SOILBIO.2011.01.030 Hestrin R., Hammer E., Mueller C., and Lehmann J., 2019, Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition, Communications Biology, 2: 233. https://doi.org/10.1038/s42003-019-0481-8 Hilbeck A., Defarge N., Bøhn T., Krautter M., Conradin C., Amiel C., Panoff J., and Trtikova M., 2018, Impact of antibiotics on efficacy of cry toxins produced in two different genetically modified bt maize varieties in two lepidopteran herbivore species, ostrinia nubilalis and spodoptera littoralis, Toxins, 10(12): 489. https://doi.org/10.3390/toxins10120489 Icoz I., and Stotzky G., 2008, Fate and effects of insect-resistant Bt crops in soil ecosystems, Soil Biology and Biochemistry, 40: 559-586. https://doi.org/10.1016/J.SOILBIO.2007.11.002 Jia X., Zhong Y., Liu J., Zhu G., Shangguan Z., and Yan W., 2020, Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities, Geoderma, 366: 114256. https://doi.org/10.1016/j.geoderma.2020.114256 Kostov K., Krogh P., Damgaard C., Sweet J., and Hendriksen N., 2014, Are soil microbial endpoints changed by Bt crops compared with conventional crops? a systematic review protocol, Environmental Evidence, 3: 1-11. https://doi.org/10.1186/2047-2382-3-11 Krogh P., Kostov K., and Damgaard C., 2020, The effect of Bt crops on soil invertebrates: a systematic review and quantitative meta-analysis, Transgenic Research, 29: 487-498. https://doi.org/10.1007/s11248-020-00213-y Li Y., Wang C., Ge L., Hu C., Wu G., Sun Y., Song L., Wu X., Pan A., Xu Q., Shi J., Liang J., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Li Z., Cui J., Mi Z., Tian D., Wang J., Ma Z., Wang B., Chen H., and Niu S., 2019, Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops - A global meta-analysis, The Science of the Total Environment, 651(Pt 2): 1830-1838. https://doi.org/10.1016/j.scitotenv.2018.10.073 Liao L., Wang X., Wang J., Liu G., and Zhang C., 2021, Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland, Plant and Soil, 465: 515-532. https://doi.org/10.1007/s11104-021-05012-w Lu H., Wu W., Chen Y., Wang H., Devare M., and Thies J., 2010, Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field, Journal of Soils and Sediments, 10: 1598-1605. https://doi.org/10.1007/S11368-010-0264-9 Newman M., Hoilett N., Lorenz N., Dick R., Liles M., Ramsier C., and Kloepper J., 2016, Glyphosate effects on soil rhizosphere-associated bacterial communities, The Science of the Total Environment, 543(Pt A): 155-160. https://doi.org/10.1016/j.scitotenv.2015.11.008 Nuccio E., Hodge A., Pett-Ridge J., Herman D., Weber P., and Firestone M., 2013, An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition, Environmental Microbiology, 15(6): 1870-1881. https://doi.org/10.1111/1462-2920.12081 O’Callaghan M., Glare T., Burgess E., and Malone L., 2005, Effects of plants genetically modified for insect resistance on nontarget organisms, Annual Review of Entomology, 50: 271-292. https://doi.org/10.1146/ANNUREV.ENTO.50.071803.130352 Ogar A., Sobczyk Ł., and Turnau K., 2015, Effect of combined microbes on plant tolerance to Zn-Pb contaminations, Environmental Science and Pollution Research International, 22: 19142-19156. https://doi.org/10.1007/s11356-015-5094-2 Saha N., Chaudhary A., Singh A., and Bhowmick A., 2021, Evaluation of Bt cotton effects on belowground microbial community structure and function in tropical western India, International Journal of Environmental Science and Technology, 19: 7411-7424. https://doi.org/10.1007/s13762-021-03543-4 Sanahuja G., Banakar R., Twyman R., Capell T., and Christou P., 2011, Bacillus thuringiensis: a century of research, development and commercial applications, Plant Biotechnology Journal, 9(3): 283-300. https://doi.org/10.1111/j.1467-7652.2011.00595.x
RkJQdWJsaXNoZXIy MjQ4ODYzMg==