Molecular Soil Biology 2024, Vol.15, No.4, 172-182 http://bioscipublisher.com/index.php/msb 181 Christina M., Nouvellon Y., Laclau J., Stape J., Bouillet J., Lambais G., and Maire G., 2017, Importance of deep water uptake in tropical eucalypt forest, Functional Ecology, 31: 509-519. https://doi.org/10.1111/1365-2435.12727 Clemmensen K., Finlay R., Dahlberg A., Stenlid J., Wardle D., and Lindahl B., 2015, Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests, The New Phytologist, 205(4): 1525-1536. https://doi.org/10.1111/nph.13208 David T., Pinto C., Nadezhdina N., Kurz-Besson C., Henriques M., Quilhó T., Cermak J., Chaves M., Pereira J., and David J., 2013, Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow, Forest Ecology and Management, 307: 136-146. https://doi.org/10.1016/J.FORECO.2013.07.012 Deng L., Peng C., Kim D., Li J., Liu Y., Hai X., Liu Q., Huang C., Shangguan Z., and Kuzyakov Y., 2021, Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems, Earth-Science Reviews, 214: 103501. https://doi.org/10.1016/j.earscirev.2020.103501 Doussan C., Pierret A., Garrigues E., and Pagès L., 2006, Water uptake by plant roots: ii – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments, Plant and Soil, 283: 99-117. https://doi.org/10.1007/s11104-004-7904-z Fan Y., Miguez-Macho G., Jobbágy E., Jackson R., and Otero-Casal C., 2017, Hydrologic regulation of plant rooting depth, Proceedings of the National Academy of Sciences, 114: 10572-10577. https://doi.org/10.1073/pnas.1712381114 Fry E., Evans A., Sturrock C., Bullock J., and Bardgett R., 2018, Root architecture governs plasticity in response to drought, Plant and Soil, 433: 189-200. https://doi.org/10.1007/s11104-018-3824-1 Henry A., Cal A., Batoto T., Torres R., and Serraj R., 2012, Root attributes affecting water uptake of rice (Oryza sativa) under drought, Journal of Experimental Botany, 63: 4751-4763. https://doi.org/10.1093/jxb/ers150 Honeker L., Hildebrand G., Fudyma J., Daber L., Hoyt D., Flowers S., Gil-Loaiza J., Kübert A., Bamberger I., Anderton C., Cliff J., Leichty S., AminiTabrizi R., Kreuzwieser J., Shi L., Bai X., Veličković D., Dippold M., Ladd S., Werner C., Meredith L., and Tfaily M., 2022, Elucidating drought-tolerance mechanisms in plant roots through 1H NMR metabolomics in parallel with MALDI-MS, and NanoSIMS imaging techniques, Environmental Science and Technology, 56(3): 2021-2032. https://doi.org/10.1021/acs.est.1c06772 Jackisch C., Knoblauch S., Blume T., Zehe E., and Hassler S., 2019, Estimates of tree root water uptake from soil moisture profile dynamics, Biogeosciences. https://doi.org/10.5194/bg-2019-466 Janssen T., Fleischer K., Luyssaert S., Naudts K., and Dolman H., 2020, Drought resistance increases from the individual to the ecosystem level in highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and ecosystem responses to drought, Biogeosciences, 17: 2621-2645. https://doi.org/10.5194/BG-17-2621-2020 Kinzinger L., Mach J., Haberstroh S., Schindler Z., Frey J., Dubbert M., Seeger S., Seifert T., Weiler M., Orlowski N., and Werner C., 2023, Interaction between Beech and Spruce trees in temperate forests affects water use, root water uptake pattern and canopy structure, Tree Physiology, 44(1): tpad144. https://doi.org/10.1093/treephys/tpad144 Kou X., Han W., and Kang J., 2022, Responses of root system architecture to water stress at multiple levels: a meta-analysis of trials under controlled conditions, Frontiers in Plant Science, 13: 1085409. https://doi.org/10.3389/fpls.2022.1085409 Lehto T., and Zwiazek J., 2011, Ectomycorrhizas and water relations of trees: a review, Mycorrhiza, 21: 71-90. https://doi.org/10.1007/s00572-010-0348-9 Li W., Hartmann H., Adams H., Zhang H., Jin C., Zhao C., Guan D., Wang A., Yuan F., and Wu J., 2018, The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species, Tree Physiology, 38: 1706-1723. https://doi.org/10.1093/treephys/tpy059 Liu Y., Nadezhdina N., Hu W., Clothier B., Duan J., Li X., and Xi B., 2023, Evaporation-driven internal hydraulic redistribution alleviates root drought stress: mechanisms and modeling, Plant Physiology, 193(2): 1058-1072. https://doi.org/10.1093/plphys/kiad364 Mackay D., Savoy P., Grossiord C., Tai X., Pleban J., Wang D., McDowell N., Adams H., and Sperry J., 2019, Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics, The New Phytologist, 225(2): 679-692. https://doi.org/10.1111/nph.16043 María N., Guevara M., Perdiguero P., Vélez M., Cabezas J., López-Hinojosa M., Li Z., Díaz L., Pizarro A., Mancha J., Sterck L., Sánchez-Gómez D., Miguel C., Collada C., Díaz-Sala M., and Cervera M., 2020, Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms, Ecology and Evolution, 10: 9788-9807. https://doi.org/10.1002/ece3.6613 Martínez-Sancho E., Treydte K., Lehmann M., Rigling A., and Fonti P., 2022, Drought impacts on tree carbon sequestration and water use – evidence from intra-annual tree‐ring characteristics, The New Phytologist, 236: 58-70. https://doi.org/10.1111/nph.18224
RkJQdWJsaXNoZXIy MjQ4ODYzMg==