Molecular Soil Biology 2024, Vol.15, No.4, 151-162 http://bioscipublisher.com/index.php/msb 161 References Ayangbenro A., Chukwuneme C., Ayilara M., Kutu F., Khantsi M., Adeleke B., Glick B., and Babalola O., 2022, Harnessing the rhizosphere soil microbiome of organically amended soil for plant productivity, Agronomy, 12(12): 3179. https://doi.org/10.3390/agronomy12123179 Backer R., Rokem J., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., and Smith D., 2018, Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture, Frontiers in Plant Science, 9: 1473. https://doi.org/10.3389/fpls.2018.01473 Bauw P., Mai T., Schnepf A., Merckx R., Smolders E., and Vanderborght J., 2020, A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils, Annals of botany, 126(4): 789-806. https://doi.org/10.1093/aob/mcaa120 Belimov A., Dodd I., Hontzeas N., Theobald J., Safronova V., and Davies W., 2009, Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling, The New phytologist, 181(2): 413-423. https://doi.org/10.1111/j.1469-8137.2008.02657.x Bhattacharyya A., Pablo C., Mavrodi O., Weller D., Thomashow L., and Mavrodi D., 2021, Rhizosphere plant-microbe interactions under water stress, Advances in Applied Microbiology, 115: 65-113. https://doi.org/10.1016/bs.aambs.2021.03.001 Chen C., Song W., Sun L., Qin S., Ren C., Yang J., Feng D., Liu N., Yan J., Cui B., Zhong Z., Li Q., Liu Z., and Liu Z., 2022, Effect of seaweed extract supplement on rice rhizosphere bacterial community in tillering and heading stages, Agronomy, 12(2): 342. https://doi.org/10.3390/agronomy12020342 Chen Y., Li S., Zhang Y., Li T., Ge H., Xia S., Gu J., Zhang H., Lü B., Wu X., Wang Z., Yang J., Zhang J., and Liu L., 2019, Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields, Soil Biology and Biochemistry, 129: 191-200. https://doi.org/10.1016/j.soilbio.2018.11.015 Dabral S., Saxena S., Choudhary D., Bandyopadhyay P., Sahoo R., Tuteja N., and Nath M., 2020, Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth, Symbiosis, 81: 139-148. https://doi.org/10.1007/s13199-020-00689-6 Ding L., Cui H., Nie S., Long X., Duan G., and Zhu Y., 2019, Microbiomes inhabiting rice roots and rhizosphere, FEMS Microbiology Ecology, 95(5): fiz040. https://doi.org/10.1093/femsec/fiz040 Grover M., Bodhankar S., Sharma A., Sharma P., Singh J., and Nain L., 2021, PGPR mediated alterations in root traits: way toward sustainable crop production, Frontiers in Sustainable Food Systems, 4: 618230. https://doi.org/10.3389/fsufs.2020.618230 Guo J., Ling N., Li Y., Li K., Ning H., Shen Q., Guo S., and Vandenkoornhuyse P., 2021, Seed-borne, endospheric and rhizospheric core microbiota as predictor for plant functional traits across rice cultivars are dominated by deterministic processes, New Phytologist, 230(5): 2047-2060. https://doi.org/10.1111/nph.17297 Hakim S., Naqqash T., Nawaz M., Laraib I., Siddique M., Zia R., Mirza M., and Imran A., 2021, Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability, Frontiers in Sustainable Food Systems, 5: 617157. https://doi.org/10.3389/fsufs.2021.617157 Hussain M. B., Shah S. H., Matloob A., Mubaraka R., Ahmed N., Ahmad I. and Jamshaid M. U., 2022, Rice interactions with plant growth promoting rhizobacteria, In: Sarwar, N., Atique-ur-Rehman, Ahmad, S., Hasanuzzaman, M. (eds), Modern Techniques of Rice Crop Production . Springer, Singapore, pp.231-255. https://doi.org/10.1007/978-981-16-4955-4_14 Khan N., Ali S., Shahid M., Mustafa A., Sayyed R., and Curá J., 2021, Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A Review, Cells, 10(6): 1551. https://doi.org/10.3390/cells10061551 Kumawat K., Razdan N., and Saharan K., 2021, Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives, Microbiological Research, 254: 126901. https://doi.org/10.1016/j.micres.2021.126901 Lazcano C., Boyd E., Holmes G., Hewavitharana S., Pasulka A., and Ivors K., 2021, The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions, Scientific Reports, 11(1): 3188. https://doi.org/10.1038/s41598-021-82768-2 Li H., Su J., Yang X., and Zhu Y., 2019, Distinct rhizosphere effect on active and total bacterial communities in paddy soils, The Science of the total environment, 649: 422-430. https://doi.org/10.1016/j.scitotenv.2018.08.373 Lu T., Ke M., Peijnenburg W., Zhu Y., Zhang M., Sun L., Fu Z., and Qian H., 2018, Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage, Journal of Agricultural and Food Chemistry, 66(11): 2645-2653. https://doi.org/10.1021/acs.jafc.7b06155
RkJQdWJsaXNoZXIy MjQ4ODYzMg==