Molecular Soil Biology 2024, Vol.15, No.3, 129-139 http://bioscipublisher.com/index.php/msb 138 Kebede E., 2021, Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems, Front. Sustain. Food Syst., 5: 767998. https://doi.org/10.3389/fsufs.2021.767998 Klonowska A., Chaintreuil C., Tisseyre P., Miché L., Melkonian R., Ducousso M., Laguerre G., Brunel B., and Moulin L., 2012, Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils, FEMS Microbiology Ecology, 81(3): 618-635. https://doi.org/10.1111/j.1574-6941.2012.01393.x Korir H., Mungai N., Thuita M., Hamba Y., and Masso C., 2017, Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil, Frontiers in Plant Science, 8: 141. https://doi.org/10.3389/fpls.2017.00141 Koskey G., Mburu S., Njeru E., Kimiti J., Ombori O., and Maingi J., 2017, Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern kenya, Frontiers in Plant Science, 8: 443. https://doi.org/10.3389/fpls.2017.00443 Lepetit M., and Brouquisse R., 2023, Control of the rhizobium–legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling, Frontiers in Plant Science, 14: 1114840. https://doi.org/10.3389/fpls.2023.1114840 Lindström K., and Mousavi S., 2019, Effectiveness of nitrogen fixation in rhizobia, Microbial Biotechnology, 13: 1314-1335. https://doi.org/10.1111/1751-7915.13517 Lindström K., Terefework Z., Suominen L., and Lortet G., 2022, Signalling and development of rhizobium: legume symbioses, Biology and Environment: Proceedings of the Royal Irish Academy, 102B: 61-64. https://doi.org/10.3318/BIOE.2002.102.1.61 Liu X., Lu X., Zhao W., Yang S., Wang J., Xia H., Wei X., Zhang J., Chen L., and Chen Q., 2021, The rhizosphere effect of native legume Albizzia julibrissin on coastal saline soil nutrient availability, microbial modulation, and aggregate formation, The Science of the Total Environment, 806: 150705. https://doi.org/10.1016/j.scitotenv.2021.150705 Mabrouk Y., Hemissi I., Salem I., Mejri S., Saidi M., and Belhadj O., 2018, Potential of rhizobia in improving nitrogen fixation and yields of legumes, Symbiosis, 107(73495): 1-16. https://doi.org/10.5772/INTECHOPEN.73495 Matse D., Huang C., Huang Y., and Yen M., 2020, Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil, Journal of Plant Nutrition, 43: 739-752. https://doi.org/10.1080/01904167.2019.1702205 Mendoza-Suárez M., Andersen S., Poole P., and Sánchez-Cañizares C., 2021, Competition, nodule occupancy, and persistence of inoculant strains: key factors in the rhizobium-legume symbioses, Frontiers in Plant Science, 12: 690567. https://doi.org/10.3389/fpls.2021.690567 Nguyen H., Miwa H., Obirih-Opareh J., Suzaki T., Yasuda M., and Okazaki S., 2019, Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even under high nitrate concentrations, FEMS Microbiology Ecology, 96(2): fiz184. https://doi.org/10.1093/femsec/fiz184 Oldroyd G., Murray J., Poole P., and Downie J., 2011, The rules of engagement in the legume-rhizobial symbiosis, Annual Review of Genetics, 45: 119-144. https://doi.org/10.1146/annurev-genet-110410-132549 Owaresat J., Siam M., Dey D., Jabed S., Badsha F., Islam M., and Kabir M., 2023, Factors impacting rhizobium-legume symbiotic nitrogen fixation with the physiological and genetic responses to overcome the adverse conditions: a review, Agricultural Reviews, 44(1): 22-30. https://doi.org/10.18805/ag.rf-257 Pankievicz V., Irving T., Maia L., and Ané J., 2019, Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops, BMC Biology, 17: 99. https://doi.org/10.1186/s12915-019-0710-0 Pastor-Bueis R., Sánchez-Cañizares C., James E., and González-Andrés F., 2019, Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance, Frontiers in Microbiology, 10: 2724. https://doi.org/10.3389/fmicb.2019.02724 Santi C., Bogusz D., and Franche C., 2013, Biological nitrogen fixation in non-legume plants, Annals of Botany, 111(5): 743-767. https://doi.org/10.1093/aob/mct048 Schulte C., Borah K., Wheatley R., Terpolilli J., Saalbach G., Crang N., Groot D., Ratcliffe R., Kruger N., Papachristodoulou A., and Poole P., 2021, Metabolic control of nitrogen fixation in rhizobium-legume symbioses, Science Advances, 7: eabh2433. https://doi.org/10.1126/sciadv.abh2433 Schwember A., Schulze J., Pozo A., and Cabeza R., 2019, Regulation of symbiotic nitrogen fixation in legume root nodules, Plants, 8(9): 333. https://doi.org/10.3390/plants8090333 Souza-Torres A., Govea-Alcaide E., Gómez-Padilla E., Masunaga S., Effenberger F., Rossi L., López-Sánchez R., and Jardim R., 2021, Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil, Rhizosphere, 17: 100275. https://doi.org/10.1016/j.rhisph.2020.100275
RkJQdWJsaXNoZXIy MjQ4ODYzMg==