Molecular Soil Biology 2024, Vol.15, No.3, 118-128 http://bioscipublisher.com/index.php/msb 127 Araújo M., Assis C., Sá R., Silva J., Veras B., Silva K., Santos G., Oliveira V., Santos J., Porto A., and Oliveira M., 2020, Impacts of agricultural toxicity on non-target organisms in aquatic ecosystem, Emerging Contaminants, pp/79-92. https://doi.org/10.5772/intechopen.93941 Babendreier D., Wan M., Tang R., Gu R., Tambo J., Liu Z., Grossrieder M., Kansiime M., Wood A., Zhang F., and Romney D., 2019, Impact assessment of biological control-based integrated pest management in rice and maize in the greater mekong subregion. Insects, 10(8): 226. https://doi.org/10.3390/insects10080226 Baker B., Green T., and Loker A., 2020, Biological control and integrated pest management in organic and conventional systems, Biological Control, 140: 104095. https://doi.org/10.1016/j.biocontrol.2019.104095 Clasen B., Loro V., Murussi C., Tiecher T., Moraes B., and Zanella R., 2018, Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system, The Science of the Total Environment, 626: 737-743. https://doi.org/10.1016/j.scitotenv.2018.01.154 Comoretto L., Arfib B., Talva R., Chauvelon P., Pichaud M., Chiron S., and Höhener P., 2008, Runoff of pesticides from rice fields in the Ile de Camargue (Rhône river delta, France): field study and modeling, Environmental pollution, 151(3): 486-493. https://doi.org/10.1016/J.ENVPOL.2007.04.021 Dash N., Kaushik M., Kumar A., Abraham G., and Singh P., 2018, Toxicity of biocides to native cyanobacteria at different rice crop stages in wetland paddy field, Journal of Applied Phycology, 30: 483-493. https://doi.org/10.1007/s10811-017-1276-2 Dhakal A., and Poudel S., 2020, Integrated pest management (IPM) and its application in rice-a review, 1: 54-58. https://doi.org/10.26480/rfna.02.2020.54.58 Dubey S., Kumar A., Singh M., Singh A., and Prakash V., 2023, Impact of herbicides on yield of direct-seeded rice and microbial population in soil, Current Journal of Applied Science and Technology, 42(38): 36-41. https://doi.org/10.9734/cjast/2023/v42i384250 Elahi E., Weijun C., Zhang H., and Nazeer M., 2019, Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence, Land Use Policy, 83: 461-474. https://doi.org/10.1016/J.LANDUSEPOL.2019.02.023 Fahad S., Saud S., Akhter A., Bajwa A., Hassan S., Battaglia M., Adnan M., Wahid F., Datta R., Babur E., Danish S., Zarei T., and Irshad I., 2021, Bio-based integrated pest management in rice: an agro-ecosystems friendly approach for agricultural sustainability, Journal of the Saudi Society of Agricultural Sciences, 20: 94-102. https://doi.org/10.1016/j.jssas.2020.12.004 Gamaralalage N., Yadav S., Propper C., Kumar V., Dayawansa N., and Singleton G., 2021, Assessing potential environmental impacts of pesticide usage in paddy ecosystems: a case study in the Deduru Oya River Basin, Sri Lanka. Environmental Toxicology and Chemistry, 41(2): 343-355. https://doi.org/10.1002/etc.5261 Hajjar M., Ahmed N., Alhudaib K., and Ullah H., 2023, Integrated insect pest management techniques for rice, Sustainability, 15(5): 4499. https://doi.org/10.3390/su15054499 Jolodar N., Karimi S., Bouteh E., Balist J., and Prosser R., 2021, Human health and ecological risk assessment of pesticides from rice production in the Babol Roud River in Northern Iran, The Science of the Total Environment, 772: 144729. https://doi.org/10.1016/j.scitotenv.2020.144729 Kumar U., Berliner J., Adak T., Rath P., Dey A., Pokhare S., Jambhulkar N., Panneerselvam P., Kumar A., and Mohapatra S., 2017, Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system, Ecotoxicology and Environmental Safety, 135: 225-235. https://doi.org/10.1016/j.ecoenv.2016.10.003 Liu J., Ouyang X., Shen J., Li Y., Sun W., Jiang W., and Wu J., 2020, Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China, The Science of the Total Environment, 715: 136852. https://doi.org/10.1016/j.scitotenv.2020.136852 Mariyono J., 2008, Direct and indirect impacts of integrated pest management on pesticide use: a case of rice agriculture in Java, Indonesia, Pest Management Science, 64(10): 1069-1073. https://doi.org/10.1002/ps.1602 Moore M., Locke M., and Cullum R., 2018, Expanding wetland mitigation: can rice fields remediate pesticides in agricultural runoff? Journal of Environmental Quality, 47(6): 1564-1571. https://doi.org/10.2134/jeq2018.04.0154 Ndayambaje B., Amuguni H., Coffin-Schmitt J., Sibo N., Ntawubizi M., and VanWormer E., 2019, Pesticide application practices and knowledge among small-scale local rice growers and communities in rwanda: a cross-sectional study, International Journal of Environmental Research and Public Health, 16(23): 4770. https://doi.org/10.3390/ijerph16234770 Ogura A., Lima J., Marques J., Sousa L., Rodrigues V., and Espíndola E., 2021, A review of pesticides sorption in biochar from maize, rice, and wheat residues: current status and challenges for soil application, Journal of Environmental Management, 300: 113753. https://doi.org/10.1016/j.jenvman.2021.113753
RkJQdWJsaXNoZXIy MjQ4ODYzMg==