MSB_2024v15n3

Molecular Soil Biology 2024, Vol.15, No.3, 99-108 http://bioscipublisher.com/index.php/msb 107 Liu J., Ding C., Zhang W., Wei Y., Zhou Y., and Zhu W., 2022, Litter mixing promoted decomposition rate through increasing diversities of phyllosphere microbial communities, Frontiers in Microbiology, 13: 1009091. https://doi.org/10.3389/fmicb.2022.1009091 Lladó S., López-Mondéjar R., and Baldrian P., 2017, Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change, Microbiology and Molecular Biology Reviews, 81: 10. https://doi.org/10.1128/MMBR.00063-16 Luo D., Cheng R., Shi Z., and Wang W., 2017, Decomposition of leaves and fine roots in three subtropical plantations in China affected by litter substrate quality and soil microbial community, Forests, 8: 412. https://doi.org/10.3390/F8110412 McBride S., Choudoir M., Fierer N., and Strickland M., 2020, Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics, Ecology, 101(10): e03130. https://doi.org/10.1002/ecy.3130 Naimei T., 2011, The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area,southern China, Acta Ecologica Sinica, 31(11): 3027-3035. Pei Z., Leppert K., Eichenberg D., Bruelheide H., Niklaus P., Buscot F., and Gutknecht J., 2017, Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem, Biogeochemistry, 134: 163-181. https://doi.org/10.1007/s10533-017-0353-6 Prescott C.E., and Grayston S., 2013, Tree species influence on microbial communities in litter and soil: current knowledge and research needs, Forest Ecology and Management, 309: 19-27. https://doi.org/10.1016/J.FORECO.2013.02.034 Prescott C.E., and Vesterdal L., 2021, Decomposition and transformations along the continuum from litter to soil organic matter in forest soils, Forest Ecology and Management, 498: 119522. https://doi.org/10.1016/J.FORECO.2021.119522 Salamanca E., Raubuch M., and Joergensen R., 2006, Microbial reaction of secondary tropical forest soils to the addition of leaf litter, Applied Soil Ecology, 31: 53-61. https://doi.org/10.1016/J.APSOIL.2005.04.005 Sánchez-Galindo L., Sandmann D., Marian F., Krashevska V., Maraun M., and Scheu S., 2021, Leaf litter identity rather than diversity shapes microbial functions and microarthropod abundance in tropical montane rainforests, Ecology and Evolution, 11(5): 2360-2374. https://doi.org/10.1002/ece3.7208 Santonja M., Fernandez C., Proffit M., Gers C., Gauquelin T., Reiter I., Cramer W., and Baldy V., 2017, Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest, Journal of Ecology, 105(3): 801-815. https://doi.org/10.1111/1365-2745.12711 Santonja M., Foucault Q., Rancon A., Gauquelin T., Fernandez C., Baldy V., and Mirleau P., 2018, Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest, Soil Biology and Biochemistry, 125: 27-36. https://doi.org/10.1016/J.SOILBIO.2018.06.020 Sayer E., 2005, Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems, Biological Reviews, 81(1): 1-31. https://doi.org/10.1017/S1464793105006846 Silva W., Périco E., Dalzochio M., Santos M., and Cajaiba R., 2018, Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon, Forest Ecology and Management, 429: 189-197. https://doi.org/10.1016/J.FORECO.2018.07.020 Štursová M., Žifčáková L., Leigh M., Burgess R., and Baldrian P., 2012, Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers, FEMS microbiology ecology, 80(3): 735-746. https://doi.org/10.1111/j.1574-6941.2012.01343.x Sun H., Wang Q., Liu N., Li L., Zhang C., Liu Z., and Zhang Y., 2017, Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil, Applied Soil Ecology, 111: 17-24. https://doi.org/10.1016/J.APSOIL.2016.11.008 Suthar S., and Gairola S., 2014, Nutrient recovery from urban forest leaf litter waste solids using Eisenia fetida. Ecological Engineering, 71: 660-666. https://doi.org/10.1016/J.ECOLENG.2014.08.010 Tanikawa T., Maie N., Fujii S., Sun L., Hirano Y., Mizoguchi T., and Matsuda Y., 2022, Contrasting patterns of nitrogen release from fine roots and leaves driven by microbial communities during decomposition, The Science of the Total Environment, 158809. https://doi.org/10.2139/ssrn.4161845 Voß C., Fiore-Donno A., Guerreiro M., Peršoh D., and Bonkowski M., 2019, Metatranscriptomics reveals unsuspected protistan diversity in leaf litter across temperate beech forests, with Amoebozoa the dominating lineage, FEMS microbiology ecology, 95: 10. https://doi.org/10.1093/femsec/fiz142 Wang L., Deng D., Feng Q., Xu Z., Pan H., and Li H., 2022, Changes in litter input exert divergent effects on the soil microbial community and function in stands of different densities, The Science of the Total Environment, 157297. https://doi.org/10.2139/ssrn.4062576

RkJQdWJsaXNoZXIy MjQ4ODYzMg==