MSB_2024v15n2

Molecular Soil Biology 2024, Vol.15, No.2, 87-98 http://bioscipublisher.com/index.php/msb 97 Chialva M., Ghignone S., Cozzi P., Lazzari B., Bonfante P., Abbruscato P., and Lumini E., 2020, Water management and phenology influence the root-associated rice field microbiota, FEMS Microbiology Ecology, 96(9): fiaa146. https://doi.org/10.1093/femsec/fiaa146 Das J., Sultana S., Rangappa K., Kalita M., and Thakuria D., 2020, Endophyte bacteria alter physiological traits and promote growth of rice (Oryza sativa L.) in aluminium toxic and phosphorus deficient acid inceptisols, Journal of Pure and Applied Microbiology, 14: 627-639. https://doi.org/10.22207/jpam.14.1.65 Das S., Gwon H., Khan M.I., Van Nostrand J.V., Alam M., and Kim P., 2019, Taxonomic and functional responses of soil microbial communities to slag-based fertilizer amendment in rice cropping systems, Environment International, 127: 531-539. https://doi.org/10.1016/j.envint.2019.04.012 Ding L.J., Cui H., Nie S., Long X., Duan G., and Zhu Y.G., 2019, Microbiomes inhabiting rice roots and rhizosphere, FEMS Microbiology Ecology, 95(5): fiz040. https://doi.org/10.1093/femsec/fiz040 Edwards J.A., Santos-Medellín C., Nguyen B., Kilmer J., Liechty Z.S., Veliz E., Ni J., Phillips G., and Sundaresan V., 2019, Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota, Genome Biology, 20: 1-14. https://doi.org/10.1186/s13059-019-1825-x Edwards J., Johnson C., Santos-Medellín C., Lurie E., Podishetty N., Bhatnagar S., Eisen J., and Sundaresan V., 2015, Structure, variation, and assembly of the root-associated microbiomes of rice, Proceedings of the National Academy of Sciences, 112: E911-E920. https://doi.org/10.1073/pnas.1414592112 Harman G., and Uphoff N., 2019, Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits, Scientifica, 2019(1): 9106395. https://doi.org/10.1155/2019/9106395 Inubushi K., Yashima M., Hanazawa S., Goto A., Miyamoto K., Tsuboi T., and Asea G., 2020, Long-term fertilizer management in NERICA cultivated upland affects soil bio-chemical properties, Soil Science and Plant Nutrition, 66: 247-253. https://doi.org/10.1080/00380768.2019.1705738 Jiao S., Qi J., Jin C., Liu Y., Wang Y., Pan H., Chen S., Liang C., Peng Z., and Wei G., 2022, Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems, Global Change Biology, 28: 6653-6664. https://doi.org/10.1111/gcb.16387 Jiao S., Xu Y., Zhang J., Hao X., and Lu Y., 2019, Core microbiota in agricultural soils and their potential associations with nutrient cycling, mSystems, 4: 10. https://doi.org/10.1128/mSystems.00313-18 Liu J., Song Y., Tang M., Lu Q., and Zhong G., 2020, Enhanced dissipation of xenobiotic agrochemicals harnessing soil microbiome in the tillage-reduced rice-dominated agroecosystem, Journal of Hazardous Materials, 398: 122954. https://doi.org/10.1016/j.jhazmat.2020.122954 Lupatini M., Korthals G., de Hollander M., Janssens T., and Kuramae E., 2017, Soil microbiome is more heterogeneous in organic than in conventional farming system, Frontiers in Microbiology, 7: 2064. https://doi.org/10.3389/fmicb.2016.02064 Mallano A.I., Zhao X., Wang H., Jiang G., Sun B.Y., and Huang C., 2022, Divergent taxonomic responses of below-ground microbial communities to silicate fertilizer and biofertilizer amendments in two rice ecotypes, Frontiers in Agronomy, 4: 1071890. https://doi.org/10.3389/fagro.2022.1071890 Nam B., Lee H.J., and Choi Y.J., 2023, Organic farming allows balanced fungal and oomycetes communities, Microorganisms, 11: 1307. https://doi.org/10.3390/microorganisms11051307 Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., and Tétu T., 2016, Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization, Applied Soil Ecology, 108: 147-155. https://doi.org/10.1016/J.APSOIL.2016.08.004 O’Callaghan M., Ballard R., and Wright D., 2022, Soil microbial inoculants for sustainable agriculture: Limitations and opportunities, Soil Use and Management, 38: 1340-1369. https://doi.org/10.1111/sum.12811 Okonji C., Sakariyawo O., Okeleye K., Osunbiyi A.G., and Ajayi E., 2018, Effects of arbuscular mycorrhizal fungal inoculation on soil properties and yield of selected rice varieties, Journal of Agricultural Sciences, 63: 153-170. https://doi.org/10.2298/JAS1802153O Panwar A.S., Ansari M.A., Ravisankar N., Babu S., Prusty A.K., Ghasal P.C., and Meena A.L., 2022, Effect of organic farming on the restoration of soil quality, ecosystem services, and productivity in rice–wheat agro-ecosystems, Frontiers in Environmental Science, 10: 972394. https://doi.org/10.3389/fenvs.2022.972394 Rao V., 2018, Microbial transformations implicit with soil and crop productivity in rice systems, In Sustainable Agriculture Reviews, 57-72. https://doi.org/10.1016/B978-0-444-63987-5.00004-9 Rothenberg S., Anders M., Ajami N., Petrosino J., and Balogh E., 2016, Water management impacts rice methylmercury and the soil microbiome, The Science of the Total Environment, 572: 608-617. https://doi.org/10.1016/j.scitotenv.2016.07.017

RkJQdWJsaXNoZXIy MjQ4ODYzMg==