MSB_2024v15n2

Molecular Soil Biology 2024, Vol.15, No.2, 74-86 http://bioscipublisher.com/index.php/msb 85 Jēkabsone A., Andersone-Ozola U., Karlsons A., Neiceniece L., Romanovs M., and Ievinsh G., 2022, Dependence on nitrogen availability and rhizobial symbiosis of different accessions of Trifolium fragiferum, a crop wild relative legume species, as related to physiological traits, Plants, 11(9): 1141. https://doi.org/10.3390/plants11091141 Lemaire B., Dlodlo O., Chimphango S., Stirton C., Schrire B., Boatwright J., Honnay O., Smets E., Sprent J., James E., and Muasya A., 2015, Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa), FEMS Microbiology Ecology, 91(2): 1-17. https://doi.org/10.1093/femsec/fiu024 Lepetit M., and Brouquisse R., 2023, Control of the rhizobium- legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling, Frontiers in Plant Science, 14: 1114840. https://doi.org/10.3389/fpls.2023.1114840 Lindström K., and Mousavi S., 2019, Effectiveness of nitrogen fixation in rhizobia, Microbial Biotechnology, 13: 1314-1335. https://doi.org/10.1111/1751-7915.13517 Lodwig E., Hosie A., Bourdes A., Findlay K., Allaway D., Karunakaran R., Downie J., and Poole P., 2003, Amino-acid cycling drives nitrogen fixation in the legume- Rhizobiumsymbiosis, Nature, 422: 722-726. https://doi.org/10.1038/nature01527 Masson-Boivin C., and Sachs J., 2018, Symbiotic nitrogen fixation by rhizobia-the roots of a success story, Current Opinion in Plant Biology, 44: 7-15. https://doi.org/10.1016/j.pbi.2017.12.001 Masson-Boivin C., Giraud E., Perret X., and Batut J., 2009, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology, 17(10): 458-466. https://doi.org/10.1016/j.tim.2009.07.004 Mendoza-Suárez M., Andersen S., Poole P., and Sánchez-Cañizares C., 2021, Competition, nodule occupancy, and persistence of inoculant strains: key factors in the Rhizobium- legume symbioses, Frontiers in Plant Science, 12: 690567. https://doi.org/10.3389/fpls.2021.690567 Nakagawa T., Kaku H., Shimoda Y., Sugiyama A., Shimamura M., Takanashi K., Yazaki K., Aoki T., Shibuya N., and Kouchi H., 2011, From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume- Rhizobium symbiosis, The Plant Journal, 65(2): 169-180. https://doi.org/10.1111/j.1365-313X.2010.04411.x Nakei M., Venkataramana P., and Ndakidemi P., 2022, Soybean- nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions, 6: 824444. https://doi.org/10.3389/fsufs.2022.824444 Nandasena K., O’Hara G., Tiwari R., Sezmiş E., and Howieson J., 2007, In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L., Environmental Microbiology, 9(10): 2496-2511. https://doi.org/10.1111/J.1462-2920.2007.01368.X Quides K., and Atamian H., 2021, A microbiome engineering framework to evaluate rhizobial symbionts of legumes, Plant and Soil, 463: 631-642. https://doi.org/10.1007/S11104-021-04892-2 Remigi P., Remigi P., Remigi P., Zhu J., Zhu J., Young J., Masson-Boivin C., and Masson-Boivin C., 2016, Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts, Trends in Microbiology, 24(1): 63-75. https://doi.org/10.1016/j.tim.2015.10.007 Rodriguez C., Carlsson G., Englund J., Flöhr A., Pelzer E., Jeuffroy M., Makowski D., and Jensen E., 2020, Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, a meta-analysis, European Journal of Agronomy, 118: 126077. https://doi.org/10.1016/j.eja.2020.126077 Rodríguez-Navarro D., Oliver M., Contreras A., and Ruiz-Sainz J., 2011, Soybean interactions with soil microbes, agronomical and molecular aspects, Agronomy for Sustainable Development, 31: 173-190. https://doi.org/10.1051/agro/2010023 Roy S., Liu W., Nandety R., Crook A., Mysore K., Pislariu C., Frugoli J., Dickstein R., and Udvardi M., 2020, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, The Plant Cell, 32(1): 15-41. https://doi.org/10.1105/tpc.19.00279 Santi C., Bogusz D., and Franche C., 2013, Biological nitrogen fixation in non-legume plants, Annals of Botany, 111(5): 743-767. https://doi.org/10.1093/aob/mct048 Schwember A., Schulze J., Pozo A., and Cabeza R., 2019, Regulation of symbiotic nitrogen fixation in legume root nodules, Plants, 8(9): 333. https://doi.org/10.3390/plants8090333 Tajini F., Trabelsi M., and Drevon J., 2012, Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.), Saudi Journal of Biological Sciences, 19(2): 157-163. https://doi.org/10.1016/j.sjbs.2011.11.003 Thamer S., Schädler M., Bonte D., and Ballhorn D., 2011, Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant, Plant and Soil, 341: 209-219. https://doi.org/10.1007/s11104-010-0635-4

RkJQdWJsaXNoZXIy MjQ4ODYzMg==