Molecular Soil Biology 2024, Vol.15, No.2, 59-70 http://bioscipublisher.com/index.php/msb 69 Francioli D., Schulz E., Lentendu G., Wubet T., Buscot F., and Reitz T., 2016, Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies, Frontiers in Microbiology, 7: 1446. https://doi.org/10.3389/fmicb.2016.01446 Geisen S., Hu S., Cruz T., and Veen G., 2020, Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes, The ISME Journal, 15: 618-621. https://doi.org/10.1038/s41396-020-00792-y Hicks L., Lajtha K., and Rousk J., 2021, Nutrient limitation may induce microbial mining for resources from persistent soil organic matter, Ecology, e03328. https://doi.org/10.1002/ecy.3328 Huang Y., Guenet B., Ciais P., Janssens I., Soong J., Wang Y., Goll D., Blagodatskaya E., and Huang Y., 2018, ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition, Geoscientific Model Development, 11: 2111-2138. https://doi.org/10.5194/GMD-11-2111-2018 Lahlali R., Ibrahim D., Belabess Z., Roni M., Radouane N., Vicente C., Menéndez E., Mokrini F., Barka E., Mota M., and Peng G., 2021, High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects, Heliyon, 7(10): e08142. https://doi.org/10.1016/j.heliyon.2021.e08142 Lehmann J., Bossio D., Kögel‐Knabner I., and Rillig M., 2020, The concept and future prospects of soil health, Nature Reviews Earth & Environment, 1: 544-553. https://doi.org/10.1038/s43017-020-0080-8 Liang J., Tang S., Gong J., Zeng G., Tang W., Song B., Zhang P., Yang Z., and Luo Y., 2019, Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil, Journal of Hazardous Materials, 385: 121533. https://doi.org/10.1016/j.jhazmat.2019.121533 Ma C., Wang X., Wang J., Zhu X., Qin C., Zeng Y., Zhen W., Fang Y., and Shangguan Z., 2023, Interactions of soil nutrients and microbial communities during root decomposition of gramineous and leguminous forages, Land Degradation & Development, 34: 3250-3261. https://doi.org/10.1002/ldr.4680 Malik A., Martiny J., Brodie E., Martiny A., Treseder K., and Allison S., 2019, Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change, The ISME Journal, 14(1): 1-9. https://doi.org/10.1038/s41396-019-0510-0 Maron P., Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., Chabbi A., and Ranjard L., 2018, High microbial diversity promotes soil ecosystem functioning, Applied and Environmental Microbiology, 84(9): e02738-17. https://doi.org/10.1128/AEM.02738-17 Mengual C., Schoebitz M., Azcón R., and Roldán A., 2014, Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions, Journal of Environmental Management, 134: 1-7. https://doi.org/10.1016/j.jenvman.2014.01.008 Metcalf J., Xu Z., Weiss S., Lax S., Treuren W., Hyde E., Song S., Amir A., Larsen P., Sangwan N., Haarmann D., Humphrey G., Ackermann G., Thompson L., Lauber C., Bibat A., Nicholas C., Gebert M., Petrosino J., Reed S., Gilbert J., Lynne A., Bucheli S., Carter D., and Knight R., 2016, Microbial community assembly and metabolic function during mammalian corpse decomposition, Science, 351: 158-162. https://doi.org/10.1126/science.aad2646 Murphy D., Stockdale E., Brookes P., and Goulding K., 2007, Impact of microorganisms on chemical transformations in soil, In: Abbott, L.K., Murphy, D.V. (eds), Soil Biological Fertility, Springer, Dordrecht, pp.37-59. https://doi.org/10.1007/978-1-4020-6619-1_3 Ortiz A., and Sansinenea E., 2022, The role of beneficial microorganisms in soil quality and plant health, Sustainability, 14(9): 5358. https://doi.org/10.3390/su14095358 Palma M., Scotti R., D’Agostino N., Zaccardelli M., and Tucci M., 2022, Phyto-friendly soil bacteria and fungi provide beneficial outcomes in the host plant by differently modulating its responses through (in)direct mechanisms, Plants, 11(20): 2672. https://doi.org/10.3390/plants11202672 Prosser J., 2019, Exploring soil microbial communities: opportunities for soil ecology research, Soil Ecology Letters, 1: 1-2. https://doi.org/10.1007/s42832-019-0001-2 Rashid M., Mujawar L., Shahzad T., Almeelbi T., Ismail I., and Oves M., 2016, Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils, Microbiological Research, 183: 26-41. https://doi.org/10.1016/j.micres.2015.11.007 Raczka N., Piñeiro J., Tfaily M., Chu R., Lipton M., Paša-Tolić L., Morrissey E., and Brzostek E., 2021, Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil, Scientific Reports, 11: 19320. https://doi.org/10.1038/s41598-021-97942-9 Risueño Y., Petri C., and Conesa H., 2021, A critical assessment on the short-term response of microbial relative composition in a mine tailings soil amended with biochar and manure compost, Journal of Hazardous Materials, 417: 126080. https://doi.org/10.1016/j.jhazmat.2021.126080 Sahu P., Singh D., Prabha R., Meena K., and Abhilash P., 2019, Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability, Ecological Indicators, 105: 601-612. https://doi.org/10.1016/J.ECOLIND.2018.05.084
RkJQdWJsaXNoZXIy MjQ4ODYzMg==