MSB_2024v15n1

Molecular Soil Biology 2024, Vol.15, No.1, 1-7 http://bioscipublisher.com/index.php/msb 6 Knowles J.R., 1989, The mechanism of biotin-dependent enzymes, Annu. Rev. Biochem., 58: 195-221. https://doi.org/10.1146/annurev.bi.58.070189.001211 Li J., Brader G., Helenius E., Kariola T., and Palva E.T., 2012, Biotin deficiency causes spontaneous cell death and activation of defense signaling, Plant J., 70(2): 315-326. https://doi.org/10.1111/j.1365-313X.2011.04871.x Lu W., Guo C., Li X., Duan W., Ma C., Zhao M., Gu J., Du X., Liu Z., and Xiao K., 2014, Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes, Plant Physiol. Biochem., 76: 17-28. https://doi.org/10.1016/j.plaphy.2013.12.013 Ludwig A., Stolz J., and Sauer N., 2000, Plant sucrose-H+ symporters mediate the transport of vitamin H, Plant J., 24(4): 503-509. https://doi.org/10.1046/j.1365-313x.2000.00900.x Marquet A., Bui B.T., and Florentin D., 2001, Biosynthesis of biotin and lipoic acid. Vitam. Horm., 61: 51-101. https://doi.org/10.1016/S0083-6729(01)61002-1 McKean A.L., Ke J., Song J., Che P., Achenbach S., Nikolau B.J., and Wurtele E.S., 2000, Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase, J. Biol. Chem. 275(8): 5582-5590. https://doi.org/10.1074/jbc.275.8.5582 Muralla R., Chen E., Sweeney C., Gray J.A., Dickerman A., Nikolau B.J., and Meinke D., 2008, A bifunctional locus (BIO3-BIO1) required for biotin biosynthesis in Arabidopsis, Plant Physiol., 146(1): 60-73. https://doi.org/10.1104/pp.107.107409 Nikolau B.J., Ohlrogge J.B., and Wurtele E.S., 2003, Plant biotin-containing carboxylases, Arch. Biochem. Biophys., 414(2): 211-222. https://doi.org/10.1016/S0003-9861(03)00156-5 Nosaka K., 2006, Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 72(1): 30-40. https://doi.org/10.1007/s00253-006-0464-9 Paciolla C., Fortunato S., Dipierro N., Paradiso A., De Leonardis S., Mastropasqua L., and De Pinto M.C., 2019, Vitamin C in plants: from functions to biofortification, Antioxidants, 8(11): 519. https://doi.org/10.3390/antiox8110519 Patton D.A., Schetter A.L., Franzmann L.H., Nelson K., Ward E.R., and Meinke D.W., 1998, An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis, Plant Physiol., 116(3):935-946. https://doi.org/10.1104/pp.116.3.935 Patton D.A., Johnson M., and Ward E.R., 1996, Biotin synthase from Arabidopsis thaliana. cDNA isolation and characterization of gene expression, Plant Physiol., 112(1): 371-378. https://doi.org/10.1104/pp.112.1.371 Picciocchi A., Douce R., and Alban C., 2003, The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components, J. Biol. Chem., 278(27): 24966-24975. https://doi.org/10.1074/jbc.M302154200 Prasad P.D., Wang H., Kekuda R., Fujita T., Fei Y.J., Devoe L.D., Leibach F.H., and Ganapathy V., 1998, Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate, J. Biol. Chem., 273(13): 7501-7506. https://doi.org/10.1074/jbc.273.13.7501 Qi K., Xia X.X., and Zhong J.J., 2015, Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation, Bioresour. Technol., 189: 36-43. https://doi.org/10.1016/j.biortech.2015.02.089 Salie M.J., and Thelen J.J., 2016, Regulation and structure of the heteromeric acetyl-CoA carboxylase, Biochim. Biophys. Acta., 1861(9Pt B): 1207-1213. https://doi.org/10.1016/j.bbalip.2016.04.004 Salie M.J., Zhang N., Lancikova V., Xu D., and Thelen J.J., 2016, A family of negative regulators targets the committed step of de novo fatty acid biosynthesis, Plant Cell, 28(9): 2312-2325. https://doi.org/10.1105/tpc.16.00317 Settembre E., Begley T.P., and Ealick S.E., 2003, Structural biology of enzymes of the thiamin biosynthesis pathway, Curr. Opin. Struct. Biol., 13(6): 739-747. https://doi.org/10.1016/j.sbi.2003.10.006 Stolz J., Hoja U., Meier S., Sauer N., and Schweizer E., 1999, Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant, J. Biol. Chem., 274(26): 18741-18746. https://doi.org/10.1074/jbc.274.26.18741 Tanabe Y., Maruyama J.I., Yamaoka S., Yahagi D., Matsuo I., Tsutsumi N., and Kitamoto K., 2011, Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis, J. Biol. Chem., 286(35): 30455-30461. https://doi.org/10.1074/jbc.M111.247338

RkJQdWJsaXNoZXIy MjQ4ODYzMg==