MSB_2024v15n1

Molecular Soil Biology 2024, Vol.15, No.1, 37-45 http://bioscipublisher.com/index.php/msb 45 Raczka N., Piñeiro J., Tfaily M., Chu R., Lipton M., Paša-Tolić L., Morrissey E., and Brzostek E., 2021, Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil, Scientific Reports, 11: 19320. https://doi.org/10.1038/s41598-021-97942-9 Rahman M., Kamal M., Ranamukhaarachchi S., Alam M., Alam M., Khan M., Islam M., Alam M., Jiban S., Mamun M., Abdullah H., Biswas J., Akhter S., Naher U., Maniruzzaman M., Haque M., and Ahmed F., 2022, Effects of organic amendments on soil aggregate stability, carbon sequestration, and energy use efficiency in wetland paddy cultivation, Sustainability, 14(8): 4475. https://doi.org/10.3390/su14084475 Shafique I., Andleeb S., Aftab M., Naeem F., Ali S., Yahya S., Ahmed F., Tabasum T., Sultan T., Shahid B., Khan. A., Islam G., and Abbasi W., 2021, Efficiency of cow dung based vermi-compost on seed germination and plant growth parameters of Tagetes erectus (Marigold), Heliyon, 7(1): e05895. https://doi.org/10.1016/j.heliyon.2020.e05895 Soares M., and Rousk J., 2019, Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry, Soil Biology and Biochemistry, 131: 195-205. https://doi.org/10.1016/J.SOILBIO.2019.01.010 Sun Y., and Ge Y., 2021, Temporal changes in the function of bacterial assemblages associated with decomposing earthworms, Frontiers in Microbiology, 12: 682224. https://doi.org/10.3389/fmicb.2021.682224 Tagele S., Kim R., Jeong M., Lim K., Jung D., Lee D., Kim W., and Shin J., 2023, Soil amendment with cow dung modifies the soil nutrition and microbiota to reduce the ginseng replanting problem, Frontiers in Plant Science, 14: 1072216. https://doi.org/10.3389/fpls.2023.1072216 Wahid F., Sharif M., Fahad S., Adnan M., Khan I., Aksoy E., Ali A., Sultan T., Alam M., Saeed M., Ullah H., Basir A., Noor M., and Khan N., 2019, Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment, Journal of Plant Nutrition, 42: 1760-1769. https://doi.org/10.1080/01904167.2019.1643371 Wang S., Zhao X., Suvdantsetseg B., and Lian J., 2020, Isolation of efficient cellulose decomposer in sandy cropland and its application in straw turnover in agro-pasture ecotone of northern China, Front. Environ. Sci., 8:528732. https://doi.org/10.3389/fenvs.2020.528732 Yamada D., Imura O., Shi K., and Shibuya T., 2007, Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth, Grassland Science, 53: 121-129. https://doi.org/10.1111/J.1744-697X.2007.00082.X Yoshitake S., Soutome H., and Koizumi H., 2014, Deposition and decomposition of cattle dung and its impact on soil properties and plant growth in a cool-temperate pasture, Ecological Research, 29: 673-684. https://doi.org/10.1007/s11284-014-1153-2 Yuvaraj A., Thangaraj R., and Maheswaran R., 2018, Decomposition of poultry litter through vermicomposting using earthwormDrawida sulcata and its effect on plant growth, International Journal of Environmental Science and Technology, pp.1-14. https://doi.org/10.1007/s13762-018-2083-2

RkJQdWJsaXNoZXIy MjQ4ODYzMg==