MSB_2024v15n1

Molecular Soil Biology 2024, Vol.15, No.1, 37-45 http://bioscipublisher.com/index.php/msb 44 Fanin N., Lin D., Freschet G., Keiser A., Augusto L., Wardle D., and Veen G., 2021, Home-field advantage of litter decomposition: from the phyllosphere to the soil, The New Phytologist, 231(4): 1353-1358. https://doi.org/10.1111/nph.17475 Franko O., Paulo J., and AmhakhianS. O., 2019, Influence of combined application of cattle dung and NPK fertilizer on soil physico-chemical properties, growth, nutrient uptake and yield of fluted pumpkin (Telfairia occidentalis) in Anyigba, Kogi State, Nigeria, South Asian Research Journal of Agriculture and Fisheries, 2(1): 1-14. https://doi.org/10.36346/sarjaf.2020.v02i01.001 Griffiths H., Ashton L., Parr C., and Eggleton P., 2021, The impact of invertebrate decomposers on plants and soil, The New Phytologist, 231(6): 2142-2149. https://doi.org/10.1111/nph.17553 Herrick J., and Lal R., 1995, Soil physical property changes during dung decomposition in a tropical pasture, Soil Science Society of America Journal, 59: 908-912. https://doi.org/10.2136/SSSAJ1995.03615995005900030040X Hicks L., Lajtha K., and Rousk J., 2021, Nutrient limitation may induce microbial mining for resources from persistent soil organic matter, Ecology, 102(6): e03328. https://doi.org/10.1002/ecy.3328 Hirata M., Hasegawa N., Nomura M., Ito H., Nogami K., and Sonoda T., 2008, Deposition and decomposition of cattle dung in forest grazing in southern Kyushu, Japan, Ecological Research, 24: 119-125. https://doi.org/10.1007/s11284-008-0488-y Ji R., and Brune A., 2005, Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites, Soil Biology and Biochemistry 37(9): 1648-1655. Jones M., Tylianakis J., Reganold J., and Snyder W., 2018, Dung beetle-mediated soil modification: a data set for analyzing the effects of a recent introduction on soil quality, Ecology, 99(7): 1694. https://doi.org/10.1002/ecy.2374 Kaleri A., Ma J., Jakhar A., Hakeem A., Ahmed A., Napar W., Ahmed S., Han Y., Abro S., Nabi F., Tan C., and Kaleri A., 2020, Effects of dung beetle-amended soil on growth, physiology, and metabolite contents of bok choy and improvement in soil conditions, Journal of Soil Science and Plant Nutrition, 20: 2671-2683. https://doi.org/10.1007/s42729-020-00333-8 Konschak M., Zubrod J., Baudy P., Fink P., Pietz S., A T., Bakanov N., Schulz R., and Bundschuh M., 2021, Mixture effects of a fungicide and an antibiotic: Assessment and prediction using a decomposer-detritivore system, Aquatic Toxicology, 232: 105762. https://doi.org/10.1016/j.aquatox.2021.105762 Lehmann J., and Kleber M., 2015, The contentious nature of soil organic matter, Nature, 528: 60-68. Li Y., Wang J., Wen S., and Shao M., 2022, Effects of different earthworm ecotypes on soil nutrients distribution under straw return management in a maize agroecosystem, Land Degradation and Development, 33: 2327-2339. https://doi.org/10.1002/ldr.4301 Ma L., Weeraratne N., Gurusinghe S., Aktar J., Haque K., Eberbach P., Gurr G., and Weston L., 2023, Dung beetle activity is soil-type-dependent and modulates pasture growth and associated soil microbiome, Agronomy, 13(2): 325. https://doi.org/10.3390/agronomy13020325 Maldonado M., Aranibar J., Serrano A., Chacoff N., and Vázquez D., 2019, Dung beetles and nutrient cycling in a dryland environment, CATENA, 179: 66-73. https://doi.org/10.1016/J.CATENA.2019.03.035 Mason A., Taylor L., and DeBruyn J., 2023, Microbial ecology of vertebrate decomposition in terrestrial ecosystems, FEMS Microbiology Ecology, 99(2): fiad006. https://doi.org/10.1093/femsec/fiad006 Medina-Sauza R., Álvarez-Jiménez M., Delhal A., Reverchon F., Blouin M., Guerrero-Analco J., Cerdán C., Guevara R., Villain L., and Barois I., 2019, Earthworms building up soil microbiota, a study, Frontiers in Environmental Science, 7: 81. https://doi.org/10.3389/fenvs.2019.00081 Moustafa Y., Mustafa N., El-Dahshouri M., Ghonim S., Zuhair R., Zhang L., and Hassoub M., 2022, Influence of wastes of taro leaf, sugar beet and saw dust on physiochemical parameters of produced vermicompost, Asian Journal of Soil Science and Plant Nutrition, 8(3): 29-40. https://doi.org/10.9734/ajsspn/2022/v8i3160 Ngone M., Koottatep T., Fakkaew K., and Polprasert C., 2018, Assessment of nutrient recovery, air emission and farmers’ perceptions of indigenous mound burning practice using animal and human wastes in Myanmar, Agriculture, Ecosystems and Environment, 261(1): 54-61. https://doi.org/10.1016/J.AGEE.2018.02.033 Pathma J., Raman G., and Sakthivel N., 2019, Microbiome of rhizospheric soil and vermicompost and their applications in soil fertility, pest and pathogen management for sustainable agriculture, Soil Fertility Management for Sustainable Development, pp.189-210. https://doi.org/10.1007/978-981-13-5904-0_9 Pimentão A., Pascoal C., Castro B., and Cássio F., 2019, Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition, The Science of the Total Environment, 712: 135676. https://doi.org/10.1016/j.scitotenv.2019.135676

RkJQdWJsaXNoZXIy MjQ4ODYzMg==