Journal of Energy Bioscience 2025, Vol.16, No.5, 248-262 http://bioscipublisher.com/index.php/jeb 262 Wingler A., and Henriques R., 2022, Sugars and the speed of life—Metabolic signals that determine plant growth, development and death, Physiologia Plantarum, 174(2): e13656. https://doi.org/10.1111/ppl.13656 Wingler A., and Roitsch T., 2008, Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses, Plant Biology, 10 (Suppl 1): 50-62. https://doi.org/10.1111/j.1438-8677.2008.00086.x Wu A., Hammer G., Doherty A., Von Caemmerer S., and Farquhar G., 2019, Quantifying impacts of enhancing photosynthesis on crop yield, Nature Plants, 5: 380-388. https://doi.org/10.1038/s41477-019-0398-8 Wu W., Chen L., Liang R., Huang S., Li X., Huang B., Luo H., Zhang M., Wang X., and Zhu H., 2025, The role of light in regulating plant growth, development and sugar metabolism: a review, Frontiers in Plant Science, 15: 1507628. https://doi.org/10.3389/fpls.2024.1507628 Xing L., Zhang D., Li Y., Shen Y., Zhao C., Ma J., An N., and Han M., 2015, Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.), Plant & Cell Physiology, 56(10): 2052-2068. https://doi.org/10.1093/pcp/pcv124 Xue X., Wang J., Shukla D., Cheung L., and Chen L., 2021, When SWEETs turn tweens: updates and perspectives, Annual Review of Plant Biology, 73: 379-403. https://doi.org/10.1146/annurev-arplant-070621-093907 Yoon J., Cho L., Tun W., Jeon J., and An G., 2021, Sucrose signaling in higher plants, Plant Science: An International Journal of Experimental Plant Biology, 302: 110703. https://doi.org/10.1016/J.PLANTSCI.2020.110703 Zarea M., and Karimi N., 2023, Zinc-regulated P5CS and sucrose transporters SUT1B expression to enhance drought stress tolerance in wheat, Journal of Plant Growth Regulation, 42: 5831-5841. https://doi.org/10.1007/s00344-023-10968-3 Zhai Z., Keereetaweep J., Liu H., Xu C., and Shanklin J., 2021, The role of sugar signaling in regulating plant fatty acid synthesis, Frontiers in Plant Science, 12: 643843. https://doi.org/10.3389/fpls.2021.643843 Zhang J., Lyu H., Chen J., Cao X., Du R., Ma L., Wang N., Zhu Z., Rao J., Wang J., Zhong K., Lyu Y., Wang Y., Lin T., Zhou Y., Zhou Y., Zhu G., Fei Z., Klee H., and Huang S., 2024, Releasing a sugar brake generates sweeter tomato without yield penalty, Nature, 635: 647-656. https://doi.org/10.1038/s41586-024-08186-2 Zhong Y., Qu J., Liu X., Ding L., Liu Y., Bertoft E., Petersen B., Hamaker B., Hebelstrup K., and Blennow A., 2022, Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways, Carbohydrate Polymers, 287: 119327. https://doi.org/10.1016/j.carbpol.2022.119327 Zhu H., Li C., and Gao C., 2020, Applications of CRISPR–Cas in agriculture and plant biotechnology, Nature Reviews Molecular Cell Biology, 21: 661-677. https://doi.org/10.1038/s41580-020-00288-9 Zhu Y., Zheng Y., Liu B., KouaméK., Falade E., Chen J., and Ye X., 2024, Monosaccharide composition and glycosidic linkages analysis by ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry-Case study of plant polysaccharides, International Journal of Biological Macromolecules, 136471. https://doi.org/10.1016/j.ijbiomac.2024.136471
RkJQdWJsaXNoZXIy MjQ4ODYzNA==