JEB_2025v16n5

Journal of Energy Bioscience 2025, Vol.16, No.5, 248-262 http://bioscipublisher.com/index.php/jeb 261 Ruan Y., 2014, Sucrose metabolism: gateway to diverse carbon use and sugar signaling, Annual Review of Plant Biology, 65: 33-67. https://doi.org/10.1146/annurev-arplant-050213-040251 Saddhe A., Manuka R., and Penna S., 2020, Plant sugars: homeostasis and transport under abiotic stress in plants, Physiologia Plantarum, 171(4): 739-755. https://doi.org/10.1111/ppl.13283 Sakr S., Wang M., Dédaldéchamp F., Pérez-Garcia M., Ogé L., Hamama L., and Atanassova R., 2018, The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network, International Journal of Molecular Sciences, 19(9): 2506. https://doi.org/10.3390/ijms19092506 Selvam B., Yu Y., Chen L., and Shukla D., 2019, Molecular basis of the glucose transport mechanism in plants, ACS Central Science, 5: 1085-1096. https://doi.org/10.1021/acscentsci.9b00252 Shah I., Wu J., Li X., Hameed M., Manzoor M., Li P., Zhang Y., Niu Q., and Chang L., 2024, Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops, Scientia Horticulturae, 327: 112832. https://doi.org/10.1016/j.scienta.2023.112832 Sheen J., 2016, Dynamic and diverse sugar signaling, Current Opinion in Plant Biology, 33: 116-125. https://doi.org/10.1016/j.pbi.2016.06.018 Shi Q., Abdel-Hamid A., Sun Z., Cheng Y., Tu T., Cann I., Yao B., and Zhu W., 2023, Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals, Biotechnology Advances, 65: 108126. https://doi.org/10.1016/j.biotechadv.2023.108126 Smeekens S., and Hellmann H., 2014, Sugar sensing and signaling in plants, Frontiers in Plant Science, 5: 113. https://doi.org/10.3389/fpls.2014.00113 Stein O., and Granot D., 2019, An overview of sucrose synthases in plants, Frontiers in Plant Science, 10: 95. https://doi.org/10.3389/fpls.2019.00095 Stephen K., Beena R., Manju R., Mm V., and Stepehn R., 2021, Mechanism of sugar signaling in plants, Acta Scientific Agriculture, 5(2): 45-51. https://doi.org/10.31080/ASAG.2020.05.0948 Tang S., Barnum C., Szarzanowicz M., Sirirungruang S., and Shih P., 2023, Harnessing plant sugar metabolism for glycoengineering, Biology, 12(12): 1505. https://doi.org/10.3390/biology12121505 Tauzin A., and Giardina T., 2014, Sucrose and invertases, a part of the plant defense response to the biotic stresses, Frontiers in Plant Science, 5: 293. https://doi.org/10.3389/fpls.2014.00293 Thalmann M., and Santelia D., 2017, Starch as a determinant of plant fitness under abiotic stress, The New Phytologist, 214(3): 943-951. https://doi.org/10.1111/nph.14491 Vanderwall M., and Gendron J., 2023, HEXOKINASE1 and glucose-6-phosphate fuel plant growth and development, Development, 150(20): dev202346. https://doi.org/10.1242/dev.202346 Walker R., Chen Z., and Famiani F., 2021, Gluconeogenesis in plants: a key interface between organic acid/amino acid/lipid and sugar metabolism, Molecules, 26(17): 5129. https://doi.org/10.3390/molecules26175129 Wang A., Cheng Q., Li W., Kan M., Zhang Y., Meng X., Guo H., Jing Y., Chen M., Liu G., Wu D., Li J., and Yu H., 2024, Creation of high‐resistant starch rice through systematic editing of amylopectin biosynthetic genes in rs4, Plant Biotechnology Journal, 23: 480-488. https://doi.org/10.1111/pbi.14511 Wang B., Li N., Huang S., Hu J., Wang Q., Tang Y., Yang T., Asmutola P., Wang J., and Yu Q., 2021a, Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing, PeerJ, 9: e12478. https://doi.org/10.7717/peerj.12478 Wang H., Zhang Y., Norris A., and Jiang C., 2022a, S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response, Frontiers in Plant Science, 12: 802802. https://doi.org/10.3389/fpls.2021.802802 Wang M., Gourrierec J., Jiao F., Demotes-Mainard S., Pérez-Garcia M., Ogé L., Hamama L., Crespel L., Bertheloot J., Chen J., Grappin P., and Sakr S., 2021b, Convergence and divergence of sugar and cytokinin signaling in plant development, International Journal of Molecular Sciences, 22(3): 1282. https://doi.org/10.3390/ijms22031282 Wang M., Zang L., Jiao F., Pérez-Garcia M., Ogé L., Hamama L., Gourrierec J., Sakr S., and Chen J., 2020, Sugar signaling and post-transcriptional regulation in plants: an overlooked or an emerging topic? Frontiers in Plant Science, 11: 578096. https://doi.org/10.3389/fpls.2020.578096 Wang N., Xing C., Qu G., Zhuo J., Wang X., Li Y., Yan Y., and Li X., 2022b, New insight into the sucrose biosynthesis pathway from genome-wide identification, gene expression analysis, and subcellular localization in hexaploid wheat (Triticum aestivum L.), Journal of Plant Physiology, 276: 153770. https://doi.org/10.1016/j.jplph.2022.153770 Wang Z., and Wang C., 2023, Interactive effects of elevated temperature and drought on plant carbon metabolism: a meta‐analysis, Global Change Biology, 29: 2824-2835. https://doi.org/10.1111/gcb.16639

RkJQdWJsaXNoZXIy MjQ4ODYzNA==