Journal of Energy Bioscience 2025, Vol.16, No.5, 227-237 http://bioscipublisher.com/index.php/jeb 237 Rao X., Duan X., Mao W., Li X., Li Z., Li Q., Zheng Z., Xu H., Chen M., Wang P., Wang Y., Shen B., and Yi W., 2015, O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth, Nature Communications, 6: 8468. https://doi.org/10.1038/ncomms9468 Rashida Z., and Laxman S., 2021, The pentose phosphate pathway and organization of metabolic networks enabling growth programs, Current Opinion in Systems Biology, 28: 100390. https://doi.org/10.1016/j.coisb.2021.100390 Sarfraz I., Rasul A., Hussain G., Shah M., Zahoor A., Asrar M., Selamoğlu Z., Ji X., Adem Ş., and Sarker S., 2020, 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance, BioFactors, 46(4): 550-562. https://doi.org/10.1002/biof.1624 Sharkey T., 2021, Pentose phosphate pathway reactions in photosynthesizing cells, Cells, 10(6): 1547. https://doi.org/10.3390/cells10061547 Shimoni-Sebag A., Abramovich I., Agranovich B., Massri R., Stossel C., Atias D., Raites-Gurevich M., Yizhak K., Golan T., Gottlieb E., and Lawrence Y., 2024, A metabolic switch to the pentose-phosphate pathway induces radiation resistance in pancreatic cancer, Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 110606. https://doi.org/10.1016/j.radonc.2024.110606 Srivastava S., 2024, A review on biosynthetic pathways in plants, International Journal of Research Publication and Reviews, 5(2): 668-673. https://doi.org/10.55248/gengpi.5.0224.0422 Stincone A., Prigione A., Cramer T., Wamelink M., Campbell K., Cheung E., Olin-Sandoval V., Grüning N., Krüger A., Alam M., Keller M., Breitenbach M., Brindle K., Rabinowitz J., and Ralser M., 2014, The return of metabolism: biochemistry and physiology of the pentose phosphate pathway, Biological Reviews of the Cambridge Philosophical Society, 90: 927-963. https://doi.org/10.1111/brv.12140 Tang Y., Li W., Qiu L., Zhang X., Zhang L., Miyagishi M., Zhao H., Wu S., and Kasim V., 2023, The p52-ZER6/G6PD axis alters aerobic glycolysis and promotes tumor progression by activating the pentose phosphate pathway, Oncogenesis, 12: 17. https://doi.org/10.1038/s41389-023-00464-4 TeSlaa T., Ralser M., Fan J., and Rabinowitz J., 2023, The pentose phosphate pathway in health and disease, Nature Metabolism, 5: 1275-1289. https://doi.org/10.1038/s42255-023-00863-2 Viswanath P., Batsios G., Ayyappan V., Taglang C., Gillespie A., Larson P., Luchman H., Costello J., Pieper R., and Ronen S., 2021, Metabolic imaging detects elevated glucose flux through the pentose phosphate pathway associated with TERT expression in low-grade gliomas, Neuro-Oncology, 23(9): 1509-1522. https://doi.org/10.1093/neuonc/noab093 Wasylenko T., Ahn W., and Stephanopoulos G., 2015, The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica, Metabolic Engineering, 30: 27-39. https://doi.org/10.1016/j.ymben.2015.02.007 Wu J., Chen Y., Zou H., Xu K., Hou J., Wang M., Tian S., Gao M., Ren Q., Sun C., Lu S., Wang Q., Shu Y., Wang S., and Wang X., 2024, 6-Phosphogluconate dehydrogenase promotes glycolysis and fatty acid synthesis by inhibiting the AMPK pathway in lung adenocarcinoma cells, Cancer Letters, 601: 217177. https://doi.org/10.1016/j.canlet.2024.217177 Wu S., Wang H., Li Y., Xie Y., Huang C., Zhao H., Miyagishi M., and Kasim V., 2018, Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway, Cancer Research, 78(16): 4549-4562. https://doi.org/10.1158/0008-5472.CAN-17-4047 Zhen X., Zhang M., Hao S., and Sun J., 2024, Glucose-6-phosphate dehydrogenase and transketolase: key factors in breast cancer progression and therapy, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 176: 116935. https://doi.org/10.1016/j.biopha.2024.116935 Zhu Y., Tong X., Xue J., Qiu H., Zhang D., Zheng D., Tu Z., and Ye C., 2024, Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity, Nature Chemical Biology, 21: 35-46. https://doi.org/10.1038/s41589-024-01689-z
RkJQdWJsaXNoZXIy MjQ4ODYzNA==