JEB_2025v16n5

Journal of Energy Bioscience 2025, Vol.16, No.5, 227-237 http://bioscipublisher.com/index.php/jeb 235 References Alfarouk K., Ahmed S., Elliott R., Benoit A., Alqahtani S., Ibrahim M., Bashir A., Alhoufie S., Elhassan G., Wales C., Schwartz L., Ali H., Ahmed A., Forde P., Devesa J., Cardone R., Fais S., Harguindey S., and Reshkin S., 2020, The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH, Metabolites, 10(7): 285. https://doi.org/10.3390/metabo10070285 AlMaazmi F., Malhab L., Eldohaji L., and Saber-Ayad M., 2025, Deciphering the controversial role of TP53 inducible glycolysis and apoptosis regulator (TIGAR) in cancer metabolism as a potential therapeutic strategy, Cells, 14(8): 598. https://doi.org/10.3390/cells14080598 Bai Q., Jin W., Chen F., Zhu J., Cao L., Yang Y., Zhong F., and Li L., 2024, KLF8 promotes the survival of lung adenocarcinoma during nutrient deprivation by regulating the pentose phosphate pathway through SIRT2, Frontiers in Bioscience, 29(1): 27. https://doi.org/10.31083/j.fbl2901027 Bertels L., Murillo L., and Heinisch J., 2021, The pentose phosphate pathway in yeasts–more than a poor cousin of glycolysis, Biomolecules, 11(5): 725. https://doi.org/10.3390/biom11050725 Bertels L., Walter S., and Heinisch J., 2025, Genetic and physiological characterization of the pentose phosphate pathway in the yeast kluyveromyces lactis, International Journal of Molecular Sciences, 26(3): 938. https://doi.org/10.3390/ijms26030938 Bories G., Yeudall S., Serbulea V., Fox T., Isakson B., and Leitinger N., 2020, Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway, Blood, 136(13): 1535-1548. https://doi.org/10.1182/blood.2020004964 Chen L., Zhang Z., Hoshino A., Zheng H., Morley M., Arany Z., and Rabinowitz J., 2019, NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism, Nature Metabolism, 1: 404-415. https://doi.org/10.1038/s42255-019-0043-x Cheng J., Huang Y., Zhang X., Yu Y., Wu S., Jiao J., Tran L., Zhang W., Liu R., Zhang L., Wang M., Wang M., Yan W., Wu Y., Chi F., Jiang P., Zhang X., and Wu H., 2020, TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism, Nature Communications, 11: 1880. https://doi.org/10.1038/s41467-020-15819-3 Cherkas A., Holota S., Mdzinarashvili T., Gabbianelli R., and Žarković N., 2019, Glucose as a major antioxidant: when, what for and why it fails? Antioxidants, 9(2): 140. https://doi.org/10.3390/antiox9020140 Cho E., Cha Y., Kim H., Kim N., and Yook J., 2017, The pentose phosphate pathway as a potential target for cancer therapy, Biomolecules & Therapeutics, 26: 29-38. https://doi.org/10.4062/biomolther.2017.179 Christodoulou D., Link H., Fuhrer T., Kochanowski K., Gerosa L., and Sauer U., 2018, Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress, Cell Systems, 6(5): 569-578. https://doi.org/10.1016/j.cels.2018.04.009 Dubreuil M., Morgens D., Okumoto K., Honsho M., Contrepois K., Lee-McMullen B., Traber G., Sood R., Dixon S., Snyder M., Fujiki Y., and Bassik M., 2020, Systematic identification of regulators of oxidative stress reveals non-canonical roles for peroxisomal import and the pentose phosphate pathway, Cell Reports, 30(5): 1417-1433. https://doi.org/10.1016/j.celrep.2020.01.013 Fuentes-Lemus E., Reyes J., Figueroa J., Davies M., and López-Alarcón C., 2023, The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: consequences for NADPH production, Biochemical Society Transactions, 51(6): 2173-2187. https://doi.org/10.1042/bst20231027 Ge T., Yang J., Zhou S., Wang Y., Li Y., and Tong X., 2020, The role of the pentose phosphate pathway in diabetes and cancer, Frontiers in Endocrinology, 11: 365. https://doi.org/10.3389/fendo.2020.00365 Ghanem N., El-Baba C., Araji K., El-Khoury R., Usta J., and Darwiche N., 2021, The pentose phosphate pathway in cancer: regulation and therapeutic opportunities, Chemotherapy, 66: 179-191. https://doi.org/10.1159/000519784 Giacomini I., Ragazzi E., Pasut G., and Montopoli M., 2020, The pentose phosphate pathway and its involvement in cisplatin resistance, International Journal of Molecular Sciences, 21(3): 937. https://doi.org/10.3390/ijms21030937 Gupta R., and Gupta N., 2021, Pentose phosphate pathway, Fundamentals of Bacterial Physiology and Metabolism, 289-305. https://doi.org/10.1007/978-981-16-0723-3_10 Hambardikar V., Guitart-Mampel M., Scoma E., Urquiza P., Nagana G., Raftery D., Collins J., and Solesio M., 2022, Enzymatic depletion of mitochondrial inorganic polyphosphate (polyp) increases the generation of reactive oxygen species (ROS) and the activity of the pentose phosphate pathway (PPP) in mammalian cells, Antioxidants, 11(4): 685. https://doi.org/10.3390/antiox11040685

RkJQdWJsaXNoZXIy MjQ4ODYzNA==