Journal of Energy Bioscience 2025, Vol.16, No.5, 216-226 http://bioscipublisher.com/index.php/jeb 225 Mikulski M., Ambrosewicz-Walacik M., Duda K., and Hunicz J., 2020, Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel, Renewable Energy, 148: 739-755. https://doi.org/10.1016/j.renene.2019.10.161 Nasrollahzadeh S., Mamnabi S., Ghassemi-Golezani K., Raei Y., and Weisany W., 2023, PGPR and vermicompost with reduced chemical fertilizer enhances biodiesel production, nutrient uptake and improve oil composition of rapeseed grown under water deficit stress, South African Journal of Botany, 159: 17-25. https://doi.org/10.1016/j.sajb.2023.06.001 Nath U., Kim H., Khatun K., Park J., Kang K., and Nou I., 2016, Modification of fatty acid profiles of rapeseed (Brassica napus L.) Oil for using as food, industrial feed-stock and biodiesel, Plant Breeding and Biotechnology, 4: 123-134. https://doi.org/10.9787/PBB.2016.4.2.123 Nježić Z., Kostić M., Marić B., Stamenković O., Šimurina O., Krstić J., and Veljković V., 2023, Kinetics and optimization of biodiesel production from rapeseed oil over calcined waste filter cake from sugar beet processing plant, Fuel, 334(Pt 1): 126581. https://doi.org/10.1016/j.fuel.2022.126581 Ong’era C., Gathitu B., Murunga S., Kuloba P., and Gathirwa J., 2023, Evaluation of flash point and calorific value of nanostructured rapeseed oil biodiesel as an automotive fuel, Journal of Agriculture, Science and Technology, 23(1): 115-124. https://doi.org/10.4314/jagst.v23i1.8 Rashid U., and Anwar F., 2008, Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil, Fuel, 87: 265-273. https://doi.org/10.1016/J.FUEL.2007.05.003 Rechnia-Gorący P., Malaika A., and Kozłowski M., 2020, Effective conversion of rapeseed oil to biodiesel fuel in the presence of basic activated carbon catalysts, Catalysis Today, 357: 102-112. https://doi.org/10.1016/J.CATTOD.2019.05.055 Rezki B., Essamlali Y., Aadil M., Semlal N., and Zahouily M., 2020, Biodiesel production from rapeseed oil and low free fatty acid waste cooking oil using a cesium modified natural phosphate catalyst, RSC Advances, 10: 41065-41077. https://doi.org/10.1039/d0ra07711a Santaraite M., Sendžikienė E., Makarevičienė V., and Kazancev K., 2020, Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media, Energies, 13: 2588. https://doi.org/10.3390/en13102588 Sendžikienė E., Makarevičienė V., and Santaraite M., 2022, Simultaneous extraction of rapeseed oil and enzymatic transesterification with butanol in the mineral diesel medium, Energies, 15(18): 6837. https://doi.org/10.3390/en15186837 Sendžikienė E., Santaraite M., and Makarevičienė V., 2020, Lipase-catalysed in situ transesterification of waste rapeseed oil to produce diesel-biodiesel blends, Processes, 8(9): 1118. https://doi.org/10.3390/pr8091118 Shapovalov Y., Mazanov S., Aetov A., Kamysbaev D., Tokpayev R., and Gumerov F., 2025, Separation of rapeseed oil transesterification reaction product obtained under supercritical fluid conditions using heterogeneous catalysts, Energies, 18(7): 1669. https://doi.org/10.3390/en18071669 Šimáček P., Kubička D., Šebor G., and Pospišil M., 2009, Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel, Fuel, 88: 456-460. https://doi.org/10.1016/J.FUEL.2008.10.022 Šimáček P., Kubička D., Šebor G., and Pospišil M., 2010, Fuel properties of hydroprocessed rapeseed oil, Fuel, 89: 611-615. https://doi.org/10.1016/J.FUEL.2009.09.017 Solis J., Berkemar A., Alejo L., and Kiros Y., 2017, Biodiesel from rapeseed oil (Brassica napus) by supported Li2O and MgO, International Journal of Energy and Environmental Engineering, 8: 9-23. https://doi.org/10.1007/S40095-016-0226-0 Suchocki T., 2024, Energy utilization of rapeseed biomass in europe: a review of current and innovative applications, Energies, 17(23): 6177. https://doi.org/10.3390/en17236177 Szkudlarek Ł., Chalupka-Spiewak K., Maniukiewicz W., Nowosielska M., Szynkowska-Jóźwik M., and Mierczyński P., 2024, Biodiesel production by methanolysis of rapeseed oil—influence of SiO2/Al2O3 ratio in BEA zeolite structure on physicochemical and catalytic properties of zeolite systems with alkaline earth oxides (MgO, CaO, SrO), International Journal of Molecular Sciences, 25(7): 3570. https://doi.org/10.3390/ijms25073570 Thiagarajan S., Seetharaman S., Lokesh R., Prasanth G., Karthick B., Josephin F., Alharbi S., Pugazhendhi A., and Varuvel E., 2024, Impact of hydrogen-assisted combustion in a toroidal re-entrant combustion chamber powered by rapeseed oil/waste cooking oil biodiesel, International Journal of Hydrogen Energy, 104: 367-377. https://doi.org/10.1016/j.ijhydene.2024.07.049 Yang X., Liu Y., Bezama A., and Thrän D., 2021, Two birds with one stone: a combined environmental and economic performance assessment of rapeseed-based biodiesel production, GCB Bioenergy, 14: 215-241. https://doi.org/10.1111/gcbb.12913
RkJQdWJsaXNoZXIy MjQ4ODYzNA==