Journal of Energy Bioscience 2025, Vol.16, No.4, 205-215 http://bioscipublisher.com/index.php/jeb 215 Wang L., Czedik-Eysenberg A., Mertz R., Si Y., Tohge T., Nunes‐Nesi A., Arrivault S., Dedow L., Bryant D., Zhou W., Xu J., Weissmann S., Studer A., Li P., Zhang C., LaRue T., Shao Y., Ding Z., Sun Q., Patel R., Turgeon R., Zhu X., Provart N., Mockler T., Fernie A., Stitt M., Liu P., and Brutnell T., 2014, Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice, Nature Biotechnology, 32: 1158-1165. https://doi.org/10.1038/nbt.3019 Wang Y., Liu S., and Shi H., 2022, Comparison of climate change impacts on the growth of C3 and C4 crops in China, Ecol. Informatics, 74: 101968 https://doi.org/10.1016/j.ecoinf.2022.101968 Westhoff P., and Gowik U., 2010, Evolution of C4 photosynthesis—looking for the master switch1, Plant Physiology, 154: 598-601. https://doi.org/10.1104/pp.110.161729 Yadav S., and Mishra A., 2020, Ectopic expression of C4 photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change, Physiology and Molecular Biology of Plants, 26: 195-209. https://doi.org/10.1007/s12298-019-00751-8 Yan H., Harrison M., Liu K., Wang B., Feng P., Fahad S., Meinke H., Yang R., Liu D., Archontoulis S., Huber I., Tian X., Man J., Zhang Y., and Zhou M., 2021, Crop traits enabling yield gains under more frequent extreme climatic events, The Science of the Total Environment, 808: 152170. https://doi.org/10.1016/j.scitotenv.2021.152170 Zhang X., Pu P., Tang Y., Zhang L., and LüJ., 2019, C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit, Plant Physiology and Biochemistry: PPB, 142: 163-172. https://doi.org/10.1016/j.plaphy.2019.06.013
RkJQdWJsaXNoZXIy MjQ4ODYzNA==