JEB_2025v16n4

Journal of Energy Bioscience 2025, Vol.16, No.4, 193-204 http://bioscipublisher.com/index.php/jeb 203 Mwamahonje A., Mdindikasi Z., Mchau D., Mwenda E., Sanga D., Garcia-Oliveira A., and Ojiewo C., 2024, Advances in sorghum improvement for climate resilience in the global arid and semi-arid tropics: a review, Agronomy, 14(12): 3025. https://doi.org/10.3390/agronomy14123025 Mwangi B., Macharia I., and Bett E., 2020, A multi-dimensional adoption approach for improved sorghum varieties in eastern Kenya: a climate change adaptation perspective, Climate and Development, 13: 283-292. https://doi.org/10.1080/17565529.2020.1763237 Ndiaye M., Adam M., Ganyo K., Guisse A., Cisse N., and Muller B., 2019, Genotype-environment interaction: trade-offs between the agronomic performance and stability of dual-purpose sorghum (Sorghum bicolor L. Moench) genotypes in senegal, Agronomy, 9(12): 867. https://doi.org/10.3390/agronomy9120867 Nigam D., Devkar V., Dhiman P., Shakoor S., Liu D., Patil G., and Jiao Y., 2025, Emerging frontiers in sorghum genetic engineering, The Plant Journal: for Cell and Molecular Biology, 121(4): e17244. https://doi.org/10.1111/tpj.17244 Okoro C., and Isa J., 2021, Energy performance analysis of convective drying of sorghum gruel residue, Journal of Energy Research and Reviews, 9(2): 10-23. https://doi.org/10.9734/jenrr/2021/v9i230227 Onuwa G., 2023, Mitigating risks in smallholder sorghum (Sorghum bicolor [L.] MOENCH) production systems, Agribusiness Management in Developing Nations, 1(2): 41-44. https://doi.org/10.26480/amdn.02.2023.41.44 Ostmeyer T., Bahuguna R., Kirkham M., Bean S., and Jagadish S., 2022, Enhancing sorghum yield through efficient use of nitrogen – challenges and opportunities, Frontiers in Plant Science, 13: 845443. https://doi.org/10.3389/fpls.2022.845443 Pashynska K., 2019, Energy efficiency of grain sorghum cultivation under different fertilizer systems, Scientific Papers of the Institute of Bioenergy Crops and Sugar Beets, 27: 61-66. https://doi.org/10.47414/np.27.2019.211139 Perazzini H., Leonel A., and Perazzini M., 2021, Energy of activation, instantaneous energy consumption, and coupled heat and mass transfer modeling in drying of sorghum grains, Biosystems Engineering, 210: 181-192. https://doi.org/10.1016/j.biosystemseng.2021.08.025 Pietro Garofalo S., Modugno A., De Carolis G., and Campi P., 2025, Energy of sorghum biomass under deficit irrigation strategies in the mediterranean area, Water, 17(4): 578. https://doi.org/10.3390/w17040578 Punia P., and Kumar S., 2024, A critical review on enhanced bioethanol production from sweet sorghum using nanotechnology, Energy Nexus, 17: 100339. https://doi.org/10.1016/j.nexus.2024.100339 Rai A., Basak N., Soni P., Kumar S., Sundha P., Narjary B., Yadav G., Patel S., Kaur H., Yadav R., and Sharma P., 2022, Bioenergy sorghum as balancing feedback loop for intensification of cropping system in salt-affected soils of the semi–arid region: energetics, biomass quality and soil properties, European Journal of Agronomy, 134: 126452. https://doi.org/10.1016/j.eja.2021.126452 Ren H., Shi R., Yang D., Tian H., Wang L., Ling Z., Li J., Li L., Sun Y., and Zheng Y., 2024, Innovative strategy to enhance bioconversion of sweet sorghum bagasse (SSB) by the combination of bio-fortified ensiling and dilute alkali pretreatment, Industrial Crops and Products, 211: 118208. https://doi.org/10.1016/j.indcrop.2024.118208 Senoura T., Nozoye T., Yuki R., Yamamoto M., Maeda K., Sato-Izawa K., Ezura H., Itai R., Bashir K., Masuda H., Kobayashi T., Nakanishi H., and Nishizawa N., 2024, Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils, Plant Molecular Biology, 114(6): 117. https://doi.org/10.1007/s11103-024-01508-y Takanashi H., 2023, Genetic control of morphological traits useful for improving sorghum, Breeding Science, 73: 57-69. https://doi.org/10.1270/jsbbs.22069 Tonitto C., and Ricker-Gilbert J., 2016, Nutrient management in African sorghum cropping systems: applying meta-analysis to assess yield and profitability, Agronomy for Sustainable Development, 36: 1-19. https://doi.org/10.1007/s13593-015-0336-8 Truong S., McCormick R., Rooney W., and Mullet J., 2015, Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor, Genetics, 201: 1229-1238. https://doi.org/10.1534/genetics.115.178608 Wibowo A., and Meylani V., 2024, Modeling climate change impacts under future CCM3 scenario on sorghum (Sorghum bicolor) as an drought resilient crop in tropical arid Lombok Island, Indonesia, International Journal of Tropical Drylands, 8(1): 35-43. https://doi.org/10.13057/tropdrylands/t080105 Wiedenfeld R., 1984, Nutrient requirements and use efficiency by sweet sorghum, Energy in Agriculture, 3: 49-59. https://doi.org/10.1016/0167-5826(84)90004-4 Xiao M., Sun Q., Hong S., Chen W., Pang B., Du Z., Yang W., Sun Z., and Yuan T., 2021, Sweet sorghum for phytoremediation and bioethanol production, Journal of Leather Science and Engineering, 3: 1-23. https://doi.org/10.1186/s42825-021-00074-z

RkJQdWJsaXNoZXIy MjQ4ODYzNA==