Journal of Energy Bioscience 2025, Vol.16, No.4, 193-204 http://bioscipublisher.com/index.php/jeb 202 Fernandes S., Dias K., Ferreira D., and Brown P., 2017, Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum, Theoretical and Applied Genetics, 131: 747-755. https://doi.org/10.1007/s00122-017-3033-y Garofalo P., and Rinaldi M., 2013, Water-use efficiency of irrigated biomass sorghum in a Mediterranean environment, Spanish Journal of Agricultural Research, 11: 1153-1169. https://doi.org/10.5424/SJAR/2013114-4147 Garofalo P., Campi P., Vonella A., and Mastrorilli M., 2018, Application of multi-metric analysis for the evaluation of energy performance and energy use efficiency of sweet sorghum in the bioethanol supply-chain: a fuzzy-based expert system approach, Applied Energy, 220: 313-324. https://doi.org/10.1016/J.APENERGY.2018.03.065 Głąb L., Sowiński J., Chmielewska J., Prask H., Fugol M., and Szlachta J., 2019, Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies, Biomass and Bioenergy, 129: 105332. https://doi.org/10.1016/j.biombioe.2019.105332 Hossain M., Islam M., Rahman M., Mostofa M., and Khan M., 2022, Sorghum: a prospective crop for climatic vulnerability, food and nutritional security, Journal of Agriculture and Food Research, 8: 100300. https://doi.org/10.1016/j.jafr.2022.100300 Jankowski K., Dubis B., Sokólski M., Załuski D., Bórawski P., and Szempliński W., 2020, Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: an 11-year field experiment, Industrial Crops and Products, 148: 112326. https://doi.org/10.1016/j.indcrop.2020.112326 Kamara A., Adesiyan A., Oyinbo O., Ajeigbe H., Ignatius A., and Oluwole T., 2025, Improving the productivity and income of smallholder sorghum farmers: the role of improved crop varieties in Nigeria, Food and Energy Security, 14(1): e70058. https://doi.org/10.1002/fes3.70058 Khalifa M., and Eltahir E., 2023, Assessment of global sorghum production, tolerance, and climate risk, Front. Sustain. Food Syst., 7: 1184373. https://doi.org/10.3389/fsufs.2023.1184373 Khaskheli M., Nizamani M., Tarafder E., Das D., Nosheen S., Muhae-Ud-Din G., Khaskheli R., Ren M., Wang Y., and Yang S., 2025, Sustainable management of major fungal phytopathogens in sorghum (Sorghum bicolor L.) for food security: a comprehensive review, Journal of Fungi, 11(3): 207. https://doi.org/10.3390/jof11030207 Kugedera A., Nyamadzawo G., and Mandumbu R., 2022, Augmenting Leucaena leucocephala biomass with mineral fertiliser on rainwater use efficiency, agronomic efficiency and yields on sorghum (Sorghum bicolor [(L.) Moench]) under rainwater harvesting techniques in semi-arid region of Zimbabwe, Heliyon, 8(7): e09826. https://doi.org/10.1016/j.heliyon.2022.e09826 Liu C., Gu W., Liu C., Shi X., Li B., and Zhou Y., 2024, Comparative phenotypic and transcriptomic analysis reveals genotypic differences in nitrogen use efficiency in sorghum, Plant physiology and biochemistry: PPB, 215: 109028. https://doi.org/10.1016/j.plaphy.2024.109028 López-Sandin I., Gutiérrez-Soto G., Gutiérrez-Diez A., Medina-Herrera N., Gutiérrez-Castorena E., and Zavala-García F., 2019, Evaluation of the use of energy in the production of sweet sorghum (Sorghum bicolor (L.) Moench) under different production systems, Energies, 12(9): 1713. https://doi.org/10.3390/EN12091713 Maqbool S., B./Devi/Reddy P., and Sticklen M., 2001, Biotechnology: genetic improvement of sorghum (Sorghum bicolor (L.) Moench), In Vitro Cellular & Developmental Biology - Plant, 37: 504-515. https://doi.org/10.1007/s11627-001-0089-8 Massel K., Campbell B., Mace E., Tai S., Tao Y., Worland B., Jordan D., Botella J., and Godwin I., 2016, Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor, Frontiers in Plant Science, 7: 1544. https://doi.org/10.3389/fpls.2016.01544 Menamo T., Kassahun B., Borrell A., Jordan D., Tao Y., Hunt C., and Mace E., 2020, Genetic diversity of Ethiopian sorghum reveals signatures of climatic adaptation, Theoretical and Applied Genetics, 134: 731-742. https://doi.org/10.1007/s00122-020-03727-5 Mohammed A., and Misganaw A., 2022, Modeling future climate change impacts on sorghum (Sorghum bicolor) production with best management options in Amhara Region, Ethiopia, CABI Agriculture and Bioscience, 3: 22. https://doi.org/10.1186/s43170-022-00092-9 Moore C., Haden A., Burnham M., Kantola I., Gibson C., Blakely B., Dracup E., Masters M., Yang W., DeLucia E., and Bernacchi C., 2021, Ecosystem‐scale biogeochemical fluxes from three bioenergy crop candidates: how energy sorghum compares to maize and miscanthus, GCB Bioenergy, 13(3): 445-458. https://doi.org/10.1111/gcbb.12788 Mukherjee A., Maheshwari U., Sharma V., Sharma A., and Kumar S., 2024, Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop, Planta, 259(4): 91. https://doi.org/10.1007/s00425-024-04365-7 Mullet J., Morishige D., McCormick R., Truong S., Hilley J., McKinley B., Anderson R., Olson S., and Rooney W., 2014, Energy sorghum--a genetic model for the design of C4 grass bioenergy crops, Journal of experimental botany, 65(13): 3479-3489. https://doi.org/10.1093/jxb/eru229
RkJQdWJsaXNoZXIy MjQ4ODYzNA==