JEB_2025v16n4

Journal of Energy Bioscience 2025, Vol.16, No.4, 182-192 http://bioscipublisher.com/index.php/jeb 192 Saenz E., Ruiz A., Sciarresi C., King K., Baum M., Ferela A., Danalatos G., Gambin B., Kalogeropoulos G., Thies A., Ordóñez R., Trifunović S., Narvel J., Eudy D., Schnable P., Topp C., Vyn T., and Archontoulis S., 2025, Historical increases in plant density increased vegetative maize biomass while breeding increased reproductive biomass and allocation to ear over stem, Field Crops Research, 322: 109704. https://doi.org/10.1016/j.fcr.2024.109704 Shao H., Wu X., Duan J., Zhu F., Chi H., Liu J., Shi W., Xu Y., Wei Z., and Mi G., 2024, How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: a global meta-analysis, Field Crops Research, 315: 109430. https://doi.org/10.1016/j.fcr.2024.109430 Wang P., Wang Z., Pan Q., Sun X., Chen H., Chen F., Yuan L., and Mi G., 2019, Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis, Journal of Experimental Botany, 70: 1859-1873. https://doi.org/10.1093/jxb/erz047 Wang Z., Gao J., and Ma B., 2014, Concurrent Improvement in maize yield and nitrogen use efficiency with integrated agronomic management strategies, Agronomy Journal, 106(4): 1243-1250. https://doi.org/10.2134/AGRONJ13.0487 White W., Vincent M., Moose S., and Below F., 2012, The sugar, biomass and biofuel potential of temperate by tropical maize hybrids, GCB Bioenergy, 4(5): 496-508. https://doi.org/10.1111/j.1757-1707.2012.01158.x Wu J., Lawit S., Weers B., Sun J., Mongar N., Van Hemert J., Melo R., Meng X., Rupe M., Clapp J., Collet K., Trecker L., Roesler K., Peddicord L., Thomas J., Hunt J., Zhou W., Hou Z., Wimmer M., Jantes J., Mo H., Liu L., Wang Y., Walker C., Danilevskaya O., Lafitte R., Schussler J., Shen B., and Habben J., 2019, Overexpression of zmm28 increases maize grain yield in the field, Proceedings of the National Academy of Sciences of the United States of America, 116: 23850-23858. https://doi.org/10.1073/pnas.1902593116 Wyszkowski M., and Kordala N., 2024, Effects of humic acids on calorific value and chemical composition of maize biomass in iron-contaminated soil phytostabilisation, Energies, 17(7): 1691. https://doi.org/10.3390/en17071691 Xie G., and Peng L., 2011, Genetic engineering of energy crops: a strategy for biofuel production in China, Journal of Integrative Plant Biology, 53(2): 143-150. https://doi.org/10.1111/j.1744-7909.2010.01022.x Yan Y., Duan F., Li X., Zhao R., Hou P., Zhao M., Li S., Wang Y., Dai T., and Zhou W., 2024, Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density, Plant Physiology, 195: 2652-2667. https://doi.org/10.1093/plphys/kiae204 Yang Y., Xu W., Hou P., Liu G., Liu W., Wang Y., Zhao R., Ming B., Xie R., Wang K., and Li S., 2019, Improving maize grain yield by matching maize growth and solar radiation, Scientific Reports, 9: 3635. https://doi.org/10.1038/s41598-019-40081-z Yang Z., Cao Y., Shi Y., Qin F., Jiang C., and Yang S., 2023, Genetic and molecular exploration of maize environmental stress resilience: towards sustainable agriculture, Molecular Plant, 16(10): 1496-1517. https://doi.org/10.1016/j.molp.2023.07.005 Zafar N., Haider F., Fatima M., Ma H., Zhou Y., and Ming R., 2022, Genetic determinants of biomass in C4 crops: molecular and agronomic approaches to increase biomass for biofuels, Frontiers in Plant Science, 13: 839588. https://doi.org/10.3389/fpls.2022.839588 Zhou B., Sun X., Wang D., Ding Z., Li C., Ma W., and Zhao M., 2019, Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions, The Crop Journal, 7(4): 527-538. https://doi.org/10.1016/J.CJ.2018.12.005

RkJQdWJsaXNoZXIy MjQ4ODYzNA==