JEB_2025v16n4

Journal of Energy Bioscience 2025, Vol.16, No.4, 182-192 http://bioscipublisher.com/index.php/jeb 191 Galindo F., Rodrigues W., Fernandes G., Boleta E., Jalal A., Rosa P., Buzetti S., Lavres J., and Filho M., 2022, Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions, European Journal of Agronomy, 134: 126471. https://doi.org/10.1016/j.eja.2022.126471 Herrmann A., and Rath J., 2012, Biogas production from maize: current state, challenges, and prospects. 1. methane yield potential, BioEnergy Research, 5: 1027-1042. https://doi.org/10.1007/s12155-012-9202-6 Ibraheem F., and El-Ghareeb E., 2019, Assessment of natural variability in leaf morphological and physiological traits in maize inbreds and their related hybrids during early vegetative growth, Egyptian Journal of Basic and Applied Sciences, 6: 25-45. https://doi.org/10.1080/2314808X.2019.1627771 Jankowski K., Dubis B., Sokólski M., Załuski D., Bórawski P., and Szempliński W., 2020, Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: an 11-year field experiment, Industrial Crops and Products, 148: 112326. https://doi.org/10.1016/j.indcrop.2020.112326 Ji Y., Cheng B., Yue L., Bai S., Cao X., Li J., Wang C., and Wang Z., 2024, Biomass-derived carbon dots enhanced maize (Zea mays L.) drought tolerance by regulating phyllosphere microorganisms and ion fluxes, Environmental and Experimental Botany, 226: 105913. https://doi.org/10.1016/j.envexpbot.2024.105913 Kim K., and Lee B., 2023, Effects of climate change and drought tolerance on maize growth, Plants, 12(20): 3548. https://doi.org/10.3390/plants12203548 Kränzlein M., Geilfus C., Franzisky B., Zhang X., Wimmer M., and Zörb C., 2021, Physiological responses of contrasting maize (Zea mays L.) hybrids to repeated drought, Journal of Plant Growth Regulation, 41: 2708-2718. https://doi.org/10.1007/s00344-021-10468-2 Lei R., Wang Y., Zhou J., and Xiang H., 2025, Tap maize yield productivity in China: a meta-analysis of agronomic measures and planting density optimization, Agronomy, 15(4): 861. https://doi.org/10.3390/agronomy15040861 Li X., Wang P., Li J., Wei S., Yan Y., Yang J., Zhao M., Langdale J., and Zhou W., 2020, Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition, Communications Biology, 3: 151. https://doi.org/10.1038/s42003-020-0887-3 Lindsey A., Barker D., Metzger J., Mullen R., and Thomison P., 2018, Physiological and morphological response of a drought‐tolerant maize hybrid to agronomic management, Agronomy Journal, 110(4): 1354-1362. https://doi.org/10.2134/AGRONJ2018.01.0034 Liu X., Ma Q., Yu H., Li Y., Zhou L., He Q., Xu Z., and Zhou G., 2020, Responses of plant biomass and yield component in rice, wheat, and maize to climatic warming: a meta-analysis, Planta, 252: 90. https://doi.org/10.1007/s00425-020-03495-y Masuka B., Araus J., Das B., Sonder K., and Cairns J., 2012, Phenotyping for abiotic stress tolerance in maize, Journal of Integrative Plant Biology, 54(4): 238-249. https://doi.org/10.1111/j.1744-7909.2012.01118.x Mazaheri M., Heckwolf M., Vaillancourt B., Gage J., Burdo B., Heckwolf S., Barry K., Lipzen A., Ribeiro C., Kono T., Kaeppler H., Spalding E., Hirsch C., Buell R., De León N., and Kaeppler S., 2019, Genome-wide association analysis of stalk biomass and anatomical traits in maize, BMC Plant Biology, 19: 45. https://doi.org/10.1186/s12870-019-1653-x Muraya M., Chu J., Zhao Y., Junker A., Klukas C., Reif J., and Altmann T., 2017, Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non‐invasive phenotyping, The Plant Journal, 89: 366-380. https://doi.org/10.1111/tpj.13390 Nguyen C., Sagan V., Bhadra S., and Moose S., 2023, UAV multisensory data fusion and multi-task deep learning for high-throughput maize phenotyping. sensors (Basel, Switzerland), 23(4): 1827. https://doi.org/10.3390/s23041827 Olasogba S., and Duckers L., 2020, The impact of climate change on the value of growing maize as a biofuel, The Central European Review of Economics and Management, 4: 13-26. https://doi.org/10.29015/cerem.838 Pratikshya M., Digbijaya S., Devraj L., Kumar M., Dayanidhi M., Manasi D., Chandra S., Ranjan P., and Mishra A., 2025, Biochemical profiling of quality protein maize inbred lines for optimized biofuel production, Plant Science Today, 12(2): 1-11. https://doi.org/10.14719/pst.7576 Raza M., Feng L., Khalid M., Iqbal N., Meraj T., Hassan M., Chen Y., Feng Y., and Wenyu Y., 2019, Optimum leaf excision increases the biomass accumulation and seed yield of maize plants under different planting patterns, Annals of Applied Biology, 175(1): 54-68. https://doi.org/10.1111/AAB.12514 Rincent R., Nicolas S., Bouchet S., Bouchet S., Altmann T., Brunel D., Revilla P., Malvar R., Moreno-González J., Campo L., Melchinger A., Schipprack W., Bauer E., Schoen C., Meyer N., Ouzunova M., Dubreuil P., Giauffret C., Madur D., Combes V., Dumas F., Bauland C., Jamin P., Laborde J., Flament P., Moreau L., and Charcosset A., 2014, Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production, Theoretical and Applied Genetics, 127: 2313-2331. https://doi.org/10.1007/s00122-014-2379-7

RkJQdWJsaXNoZXIy MjQ4ODYzNA==