Journal of Energy Bioscience 2025, Vol.16, No.4, 182-192 http://bioscipublisher.com/index.php/jeb 190 From the current research, combining genetic breeding with dense planting, water and fertilizer management and other methods is the most effective yield increase solution. For example, drip irrigation and fertilization, adjustment of row spacing density, and improvement of soil have all been proven to have a significant effect on increasing biomass. The cultivation of energy corn is not only an agricultural issue, but also related to climate policy and sustainable development strategy. In the future, in addition to continuing to support planting, support should also be provided in terms of policy and industry. In terms of research, we need to further clarify the gene network, enhance the stress resistance of crops, and pay attention to its long-term sustainable performance. Only in this way can energy corn truly achieve high yield, high efficiency and sustainable development. Acknowledgments We would like to express our gratitude to the two anonymous peer reviewers for their constructive suggestions on our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ambrosio R., Pauletti V., Barth G., Povh F., Silva D., and Blum, H., 2017, Energy potential of residual maize biomass at different spacings and nitrogen doses, Ciencia E Agrotecnologia, 41: 626-633. https://doi.org/10.1590/1413-70542017416009017 Bassu S., Brisson N., Durand J., Boote K., Lizaso J., Jones J., Rosenzweig C., Ruane A., Adam M., Baron C., Basso B., Biernath C., Boogaard H., Conijn S., Corbeels M., Deryng D., Sanctis G., Gayler S., Grassini P., Hatfield J., Hoek S., Izaurralde C., Jongschaap R., Kemanian A., Kersebaum K., Kim S., Kumar N., Makowski D., Müller C., Nendel C., Priesack E., Pravia M., Sau F., Shcherbak I., Tao F., Teixeira E., Timlin D., and Waha K., 2014, How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20(7): 2301-2320. https://doi.org/10.1111/gcb.12520 Borrás L., and Vitantonio-Mazzini L., 2018, Maize reproductive development and kernel set under limited plant growth environments, Journal of Experimental Botany, 69: 3235-3243. https://doi.org/10.1093/jxb/erx452 Carpita N., and McCann M., 2008, Maize and sorghum: genetic resources for bioenergy grasses, Trends in Plant Science, 13(8): 415-420. https://doi.org/10.1016/j.tplants.2008.06.002 Chekole F., and Ahmed A., 2022, Future climate implication on maize (Zea mays) productivity with adaptive options at Harbu district, Ethiopia, Journal of Agriculture and Food Research, 11: 100480. https://doi.org/10.1016/j.jafr.2022.100480 Dahri S., Shaikh I., Talpur M., Mangrio M., Dahri Z., Hoogenboom G., and Knox J., 2024, Modelling the impacts of climate change on the sustainability of rainfed and irrigated maize in Pakistan, Agricultural Water Management, 296: 108794. https://doi.org/10.1016/j.agwat.2024.108794 Deng S., Wu Y., Zeng Q., Zhang A., Duan M., and Deng M., 2024, Effects of Cd stress on morphological and physiological characteristics of maize seedlings, Agronomy, 14(2): 379. https://doi.org/10.3390/agronomy14020379 Du R., Li Z., Xiang Y., Sun T., Liu X., Shi H., Li W., Huang X., Tang Z., Lu J., Chen J., and Zhang F., 2024, Drip fertigation increases maize grain yield by affecting phenology, grain filling process, biomass accumulation and translocation: a 4-year field trial, Plants, 13(14): 1903. https://doi.org/10.3390/plants13141903 Du X., Wang Z., Lei W., and Kong L., 2021, Increased planting density combined with reduced nitrogen rate to achieve high yield in maize, Scientific Reports, 11: 358. https://doi.org/10.1038/s41598-020-79633-z Falconnier G., Corbeels M., Boote K., Affholder F., Adam M., MacCarthy D., Ruane A., Nendel C., Whitbread A., Justes É., Ahuja L., Akinseye F., Alou I., Amouzou K., Anapalli S., Baron C., Basso B., Baudron F., Bertuzzi P., Challinor A., Chen Y., Deryng D., Elsayed M., Faye B., Gaiser T., Galdos M., Gayler S., Gérardeaux E., Giner M., Grant B., Hoogenboom G., Ibrahim E., Kamali B., Kersebaum K., Kim S., Laan M., Leroux L., Lizaso J., Maestrini B., Meier E., Mequanint F., Ndoli A., Porter C., Priesack E., Ripoche D., Sida T., Singh U., Smith W., Srivastava A., Sinha S., Tao F., Thorburn P., Timlin D., TraoréB., Twine T., and Webber H., 2020, Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‐Saharan Africa, Global Change Biology, 26: 5942-5964. https://doi.org/10.1111/gcb.15261 Galindo F., Pagliari P., Rodrigues W., Fernandes G., Boleta E., Santini J., Jalal A., Buzetti S., Lavres J., and Filho M., 2021, Silicon amendment enhances agronomic efficiency of nitrogen fertilization in maize and wheat crops under tropical conditions, Plants, 10(7): 1329. https://doi.org/10.3390/plants10071329
RkJQdWJsaXNoZXIy MjQ4ODYzNA==