Journal of Energy Bioscience 2025, Vol.16, No.4, 163-171 http://bioscipublisher.com/index.php/jeb 171 Luo G., Talebnia F., Karakashev D., Xie L., Zhou Q., and Angelidaki I., 2011, Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept, Bioresource technology, 102(2): 1433-1439. https://doi.org/10.1016/j.biortech.2010.09.071 Malaťák J., Velebil J., Bradna J., Kučera M., Gendek A., Aniszewska M., and Ivanova T., 2024, Comparative experimental assessment of pollutant emission behavior in combustion of untreated and thermally treated solid biofuels from spruce chips and rapeseed straw, Atmosphere, 15(4): 452. https://doi.org/10.3390/atmos15040452 Passoth V., and Sandgren M., 2019, Biofuel production from straw hydrolysates: current achievements and perspectives, Applied Microbiology and Biotechnology, 103: 5105-5116. https://doi.org/10.1007/s00253-019-09863-3 Ren J., Yu P., and Xu X., 2019, Straw utilization in China-status and recommendations, Sustainability, 11(6): 1762. https://doi.org/10.3390/SU11061762 Shi W., Fang Y., Chang Y., and Xie G., 2023, Toward sustainable utilization of crop straw: greenhouse gas emissions and their reduction potential from 1950 to 2021 in China, Resources, Conservation and Recycling, 190: 106824. https://doi.org/10.1016/j.resconrec.2022.106824 Stolarski M., Welenc M., Krzyżaniak M., Olba-Zięty E., Stolarski J., and Wierzbicki S., 2024, Characteristics and changes in the properties of cereal and rapeseed straw used as energy feedstock. Energies, 17(5): 1243. https://doi.org/10.3390/en17051243 Suchocki T., 2024, Energy utilization of rapeseed biomass in Europe: a review of current and innovative applications, Energies, 17(23): 6177. https://doi.org/10.3390/en17236177 Svärd A., Moriana R., Brännvall E., and Edlund U., 2018, Rapeseed straw biorefinery process, ACS Sustainable Chemistry & Engineering, 7(1): 790-801. https://doi.org/10.1021/ACSSUSCHEMENG.8B04420 Tan L., Zhong J., Jin Y., Sun Z., Tang Y., and Kida K., 2020, Production of bioethanol from unwashed-pretreated rapeseed straw at high solid loading, Bioresource technology, 303: 122949. https://doi.org/10.1016/j.biortech.2020.122949 Tang Z., Zhang C., Yin J., Fan B., He Y., and Ma C., 2025, Valorization of rapeseed straw through the enhancement of cellulose accessibility, lignin removal and xylan elimination using an n-alkyltrimethylammonium bromide-based deep eutectic solvent, International journal of biological macromolecules, 301: 140151. https://doi.org/10.1016/j.ijbiomac.2025.140151 Wang J., Ma D., Lou Y., Ma J., and Xing D., 2023, Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects, The Science of the Total Environment, 905: 166992. https://doi.org/10.1016/j.scitotenv.2023.166992 Wang S., Yin C., Jiao J., Yang X., Shi B., and Richel A., 2022, StrawFeed model: An integrated model of straw feedstock supply chain for bioenergy in China, Resources, Conservation and Recycling, 185: 106439. https://doi.org/10.1016/j.resconrec.2022.106439 Wang X., Li K., Song J., Duan H., and Wang S., 2018, Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits, Journal of Cleaner Production, 190: 787-798. https://doi.org/10.1016/J.JCLEPRO.2018.04.191 Witaszek K., Kupryaniuk K., Kupryaniuk J., Panasiewicz J., and Czekała W., 2025, Optimization of straw particle size for enhanced biogas production: a comparative study of wheat and rapeseed straw, Energies, 18(7): 1794. https://doi.org/10.3390/en18071794 Yang B., Tang Z., Fan B., He Y., and Ma C., 2024, A comprehensive analysis of organosilane surfactant-assisted hydrogen peroxide-p-toluenesulfonic acid pretreatment for enhancing saccharification efficiency of rapeseed straw, Sustainable Chemistry and Pharmacy, 42: 101834. https://doi.org/10.1016/j.scp.2024.101834
RkJQdWJsaXNoZXIy MjQ4ODYzNA==