Journal of Energy Bioscience 2025, Vol.16, No.3, 151-162 http://bioscipublisher.com/index.php/jeb 161 Dhugga K., 2007, Maize biomass yield and composition for biofuels, Crop Science, 47: 2211-2227. https://doi.org/10.2135/CROPSCI2007.05.0299 El-Araby R., 2024, Biofuel production: exploring renewable energy solutions for a greener future, Biotechnology for Biofuels and Bioproducts, 17(1): 129. https://doi.org/10.1186/s13068-024-02571-9 Gesteiro N., Butrón A., Santiago R., Gomez L.D., López-Malvar A., Álvarez-Iglesias L., Revilla P., and Malvar R.A., 2023, Breeding dual-purpose maize: grain production and biofuel conversion of the stover, Agronomy, 13(5): 1352. https://doi.org/10.3390/agronomy13051352 Hasanain M., Singh V. K., Rathore S. S., Meena V. S., Meena S. K., Shekhawat K., Singh R.K., Dwivedi B.S., Bhatia A., Upadhyay P.K., Singh R., Babu S., Kumar A., Kumar A., Fatima A., Verma G., Kumar S., Sharma K., and Singh N., 2025, Sustainable strategies in maize-wheat systems: Integrating tillage, residue, and nutrient management for food-energy-carbon footprint optimization, Renewable and Sustainable Energy Reviews, 211: 115316. https://doi.org/10.1016/j.rser.2024.115316 Herrmann A., 2013, Biogas production from maize: current state, challenges and prospects. 2. agronomic and environmental aspects, BioEnergy Research, 6: 372-387. https://doi.org/10.1007/s12155-012-9227-x Ibrahim S.M.S.H., Al-dulaimi F.K.Y, and Abdulrahman H.A., 2025, Evaluation of saccharomyces cerevisiae efficiency in producing ethanol and CO2 from maize and sorghum, IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1449(1): 012069. https://doi.org/10.1088/1755-1315/1449/1/012069 Jones C.D., Zhang X., Reddy A.D., Robertson G.P., and Izaurralde R.C., 2017, The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest, GCB Bioenergy, 9(10): 1543-1554. https://doi.org/10.1111/gcbb.12473 Khan P., Aziz T., Jan R., and Kim K.M., 2025, Effects of elevated CO2 on maize physiological and biochemical processes, Agronomy, 15(1): 202. https://doi.org/10.3390/agronomy15010202 Lorenz A.J., Gustafson T.J., Coors J.G., and De Leon N., 2010, Breeding maize for a bioeconomy: a literature survey examining harvest index and stover yield and their relationship to grain yield, Crop Science, 50(1): 1-12. https://doi.org/10.2135/CROPSCI2009.02.0086 Mitiku T., 2022, Review on haploid and double haploid maize (Zea mays) breeding technology, International Journal of Agricultural Science and Food Technology, 8(1): 52-58. https://doi.org/10.17352/2455-815x.000145 Moreira M.M., Seabra J.E., Lynd L.R., Arantes S.M., Cunha M.P., and Guilhoto J.J., 2020, Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil, Nature Sustainability, 3(3): 209-216. https://doi.org/10.1038/s41893-019-0456-2 Munaiz E., Albrecht K., and Ordás B., 2021, Genetic diversity for dual use maize: grain and second-generation biofuel, Agronomy, 11(2): 230. https://doi.org/10.3390/AGRONOMY11020230 Nakamya M., 2022, How sustainable are biofuels in a natural resource-dependent economy? Energy for Sustainable Development, 66: 296-307. https://doi.org/10.1016/j.esd.2021.12.012 Niu L., Liu L., Zhang J., Scali M., Wang W., Hu X., and Wu X., 2023, Genetic engineering of starch biosynthesis in maize seeds for efficient enzymatic digestion of starch during bioethanol production, International Journal of Molecular Sciences, 24(4): 3927. https://doi.org/10.3390/ijms24043927 Prasanna B.M., Cairns J.E., Zaidi P.H., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B.S., Nair S., Rashid Z., Vinayan M.T., Issa A.R.B., Vicente F.S., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134(6): 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Pratikshya M., Digbijaya S., Devraj L., Mahendra Kumar M., Dayanidhi M., Manasi D., Kailash C.S., Smruti Ranjan P., and Mishra A., 2025, Biochemical profiling of quality protein maize inbred lines for optimized biofuel production. Plant Sci. Today, 12(2): 1-11. https://doi.org/10.14719/pst.7576 Ranum P., Peña-Rosas J.P., and Garcia-Casal M.N., 2014, Global maize production, utilization, and consumption, Annals of the New York Academy of Sciences, 1312(1): 105-112. https://doi.org/10.1111/nyas.12396 Serrano C., Monedero E., Portero H., Jiménez E., and Ordás B., 2014, Efficient biofuel production from traditional maize under low input, Agronomy for Sustainable Development, 34: 561-567. https://doi.org/10.1007/s13593-013-0174-5 Skoufogianni E., Solomou A., Charvalas G., and Danalatos N., 2019, Maize as energy crop, Maize - Production and Use, pp.1-16. https://doi.org/10.5772/intechopen.88969 Sokan-Adeaga A.A., Salami S.A., Bolade D.O., Aledeh M., Sokan-Adeaga M.A., Amubieya O.E., Kehinde S.A., Farzadkia M., Ashraf G.M., and Hoseinzadeh E., 2024, Utilization of local corn (ZeaMays) wastes for bioethanol production by separate hydrolysis and fermentation, Journal of Hazardous Materials Advances, 15: 100447. https://doi.org/10.1016/j.hazadv.2024.100447
RkJQdWJsaXNoZXIy MjQ4ODYzNA==