JEB_2025v16n3

Journal of Energy Bioscience 2025, Vol.16, No.3, 139-150 http://bioscipublisher.com/index.php/jeb 149 Mallikarjuna M.G., Thirunavukkarasu N., Sharma R., Shiriga K., Hossain F., Bhat J.S., Mithra A.C.R., Marla S.S., Manjaiah K.M., Rao A.R., and Gupta H.S., 2020, Comparative transcriptome analysis of iron and zinc deficiency in maize (Zeamays L.), Plants, 9(12): 1812. https://doi.org/10.3390/plants9121812 Manish A., 2025, Iron deficiency anemia: A global public health concern, International Journal of Clinical Biochemistry and Research, 11(4): 229-236. https://doi.org/10.18231/j.ijcbr.2024.034 Pasricha S.R., Tye-Din J., Muckenthaler M.U., and Swinkels D.W., 2021, Iron deficiency, The Lancet, 397(10270): 233-248. https://doi.org/10.1016/S0140-6736(20)32594-0 Ram H., Naeem A., Rashid A., Kaur C., Ashraf M. Y., Malik S.S., Aslam M., Mavi G.S., Tutus Y., Yazici M.A., Govindan V., and Cakmak I., 2024, Agronomic biofortification of genetically biofortified wheat genotypes with zinc, selenium, iodine, and iron under field conditions, Frontiers in Plant Science, 15: 1455901. https://doi.org/10.3389/fpls.2024.1455901 Ramzan Y., Hafeez M.B., Khan S., Nadeem M., Batool S., and Ahmad J., 2020, Biofortification with zinc and iron improves the grain quality and yield of wheat crop, International Journal of Plant Production, 14(3): 501-510. https://doi.org/10.1007/s42106-020-00100-w Sheera A., Dey T., Aftab N., Singh T., Pandey M.K., Kumar B., and Dar Z.A., 2023, Morpho-nutritional status of micronutrient efficient wheat (Triticum aestivumL.) genotypes under changing environments, Environmental Geochemistry and Health, 45(12): 8953-8966. https://doi.org/10.1007/s10653-023-01610-y Sheraz S., Wan Y., Venter E., Verma S. K., Xiong Q., Waites J., Connorton J.M., Shewry P.R., Moore K.L., and Balk J., 2021, Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains, New Phytologist, 231(4): 1644-1657. https://doi.org/10.1111/nph.17440 Shi Y., Li J., and Sun Z., 2020, Success to iron biofortification of wheat grain by combining both plant and microbial genetics, Rhizosphere, 15: 100218. https://doi.org/10.1016/j.rhisph.2020.100218 Singh S.P., Vogel-Mikuš K., Arčon I., Vavpetič P., Jeromel L., Pelicon P., Kumar J., and Tuli R., 2013, Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron, Journal of Experimental Botany, 64(11): 3249-3260. https://doi.org/10.1093/jxb/ert160 Sun Z., Yue Z., Liu H., Ma K., and Li C., 2021, Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10, Frontiers in Nutrition, 8: 704030. https://doi.org/10.3389/fnut.2021.704030 Sundaria N., Singh M., Upreti P., Chauhan R.P., Jaiswal J.P., and Kumar A., 2019, Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivumL.) grains, Journal of Plant Growth Regulation, 38(1): 122-131. https://doi.org/10.1007/s00344-018-9818-7 Tanin M.J., Saini D.K., Kumar P., Gudi S., Sharma H., Kaur J.P., Gudi S., Sharma H., Kaur J.P., Abassy O., Bromand F., and Sharma, A., 2024, Iron biofortification in wheat: Past, present, and future, Current Plant Biology, 38: 100328. https://doi.org/10.1016/j.cpb.2024.100328 Taskın M., and Gunes A., 2022, Iron biofortification of wheat grains by foliar application of nano zero-valent iron (nZVI) and other iron sources with urea, Journal of Soil Science and Plant Nutrition, 22: 4642-4652. https://doi.org/10.1007/s42729-022-00946-1 Thapa D.B., Subedi M., Yadav R.P., Joshi B.P., Adhikari B.N., Shrestha K.P., Magar P.B., Pant K.R., Gurung S.B., Ghimire S., Gautam N.R., Acharya N.R., Sapkota M., Mishra V.K., Joshi A.K., Singh R.P., and Govindan V., 2022, Variation in grain zinc and iron concentrations, grain yield and associated traits of biofortified bread wheat genotypes in Nepal, Frontiers in Plant Science, 13: 881965. https://doi.org/10.3389/fpls.2022.881965 Velu G., Crespo Herrera L., Guzman C., Huerta J., Payne T., and Singh R.P., 2019, Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations, Frontiers in Plant Science, 9: 1971. https://doi.org/10.3389/fpls.2018.01971 Velu G., Crossa J., Singh R. P., Hao Y., Dreisigacker S., Perez-Rodriguez P., Joshi A.K., Chatrath R., Gupta V., Balasubramaniam A., Tiwari C., Mashra V.K., Sohu V.S., and Mavi G.S., 2016, Genomic prediction for grain zinc and iron concentrations in spring wheat, Theoretical and Applied Genetics, 129(8): 1595-1605. https://doi.org/10.1007/s00122-016-2726-y Virk P.S., Andersson M.S., Arcos J., Govindaraj M., and Pfeiffer W.H., 2021, Transition from targeted breeding to mainstreaming of biofortification traits in crop improvement programs, Frontiers in Plant Science, 12: 703990. https://doi.org/10.3389/fpls.2021.703990 Von Haehling S., Jankowska E.A., Van Veldhuisen D.J., Ponikowski P., and Anker S.D., 2015, Iron deficiency and cardiovascular disease, Nature Reviews Cardiology, 12(11): 659-669. https://doi.org/10.1038/nrcardio.2015.109 Wang M., Gong J., and Bhullar N.K., 2020, Iron deficiency triggered transcriptome changes in bread wheat, Computational and Structural Biotechnology Journal, 18: 2709-2722.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==