Journal of Energy Bioscience 2025, Vol.16, No.3, 139-150 http://bioscipublisher.com/index.php/jeb 148 Benson C.S., Shah A., Stanworth S.J., Frise C.J., Spiby H., Lax S.J., Murray J., and Klein A.A., 2021, The effect of iron deficiency and anaemia on women’s health, Anaesthesia, 76: 84-95. https://doi.org/10.1111/anae.15405 Bjørklund G., Semenova Y., Hangan T., Pen J. J., Aaseth J., and Peana M., 2024, Perspectives on iron deficiency as a cause of human disease in global public health, Current Medicinal Chemistry, 31(12): 1428-1440. https://doi.org/10.2174/0929867330666230324154606 Borrill P., Connorton J. M., Balk J., Miller A. J., Sanders D., and Uauy C., 2014, Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops, Frontiers in Plant Science, 5: 53. https://doi.org/10.3389/fpls.2014.00053 Cakmak I., Pfeiffer W.H., and McClafferty B., 2010, Biofortification of durum wheat with zinc and iron, Cereal Chemistry, 87(1): 10-20. https://doi.org/10.1094/CCHEM-87-1-0010 Chouraqui J.P., 2022, Dietary approaches to iron deficiency prevention in childhood—a critical public health issue, Nutrients, 14(8): 1604. https://doi.org/10.3390/nu14081604 Connorton J.M., Jones E.R., Rodríguez-Ramiro I., Fairweather-Tait S., Uauy C., and Balk J., 2017, Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification, Plant Physiology, 174(4): 2434-2444. https://doi.org/10.1104/pp.17.00672 Dhillon C.M.N., Pinstrup-Andersen P., Haas J.D., Balakrishna N., and Brahmam G.N.V., 2008, The effect of biofortified rice and wheat in India's food supply on dietary bioavailable iron, The FASEB Journal, 22(52): 770. https://doi.org/10.1096/fasebj.22.2_supplement.770 Diego Quintaes K., Barberá R., and Cilla A., 2017, Iron bioavailability in iron-fortified cereal foods: The contribution of in vitro studies, Critical reviews in food science and nutrition, 57(10): 2028-2041. https://doi.org/10.1080/10408398.2013.866543 Govindan V., Atanda S., Singh R.P., Huerta-Espino J., Crespo-Herrera L.A., Juliana P., Mondal S., Joshi A.K., and Bentley A.R., 2022, Breeding increases grain yield, zinc, and iron, supporting enhanced wheat biofortification, Crop Science, 62(5): 1912-1925. https://doi.org/10.1002/csc2.20759 Gupta O.P., Singh A., Pandey V., Sendhil R., Khan M.K., Pandey A., Kumar S., Hamurcu M., Ram S., Mamurcu M., Ram S., and Singh G., 2024, Critical assessment of wheat biofortification for iron and zinc: a comprehensive review of conceptualization, trends, approaches, bioavailability, health impact, and policy framework, Frontiers in Nutrition, 10: 1310020. https://doi.org/10.3389/fnut.2023.1310020 Huyskens M., Lemmens E., Grootaert C., Van Camp J., Verbeke K., Goos P., Smolders E., and Delcour J.A., 2025, Acidic hydrothermal processing of wheat using citrate buffer largely enhances iron and zinc bioaccessibility and bioavailability to Caco-2 cells, Food Chemistry, 467: 142340. https://doi.org/10.1016/j.foodchem.2024.142340 Iriarte-Gahete M., Tarancon-Diez L., Garrido-Rodríguez V., Leal M., and Pacheco Y.M., 2024, Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy, Blood Reviews, 68: 101227. https://doi.org/10.1016/j.blre.2024.101227 Jefferds M.E.D., Mei Z., Addo Y., Hamner H.C., Perrine C.G., Flores-Ayala R., Pfeiffer C.M., and Sharma A.J., 2022, Iron deficiency in the United States: limitations in guidelines, data, and monitoring of disparities, American Journal of Public Health, 112(S8): S826-S835. https://doi.org/10.2105/AJPH.2022.306998 Kamble U., Mishra C. N., Govindan V., Sharma A. K., Pawar S., Kumar S., Krishnappa G., Gupta O.P., Singh G.P., and Singh G., 2022, Ensuring nutritional security in India through wheat biofortification: a review, Genes, 13(12), 2298. https://doi.org/10.3390/genes13122298 Krishnappa G., Khan H., Krishna H., Kumar S., Mishra C. N., Parkash O., Devate N.B., Nepolean T., Rathan N.D., Mamrutha H.M., Srivastava P., Biradar S., Uday G., Kumar M., Singh G., and Singh G.P., 2022, Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivumL.) using genome-wide association study, Scientific Reports, 12(1): 12444. https://doi.org/10.1038/s41598-022-15992-z Kumar S. B., Arnipalli S. R., Mehta P., Carrau S., and Ziouzenkova O., 2022, Iron deficiency anemia: efficacy and limitations of nutritional and comprehensive mitigation strategies, Nutrients, 14(14): 2976. https://doi.org/10.3390/nu14142976 Kumar S., DePauw R. M., Kumar S., Kumar J., Kumar S., and Pandey M.P., 2023, Breeding and adoption of biofortified crops and their nutritional impact on human health, Annals of the new York Academy of Sciences, 1520(1): 5-19. https://doi.org/10.1111/nyas.14936 Ludwig Y., and Slamet-Loedin I.H., 2019, Genetic biofortification to enrich rice and wheat grain iron: from genes to product, Frontiers in Plant Science, 10: 833. https://doi.org/10.3389/fpls.2019.00833 Lung'aho M.G., Mwaniki A.M., Szalma S.J., Hart J.J., Rutzke M.A., Kochian L.V., Glahn R.P., and Hoekenga O.A., 2011, Genetic and physiological analysis of iron biofortification in maize kernels, PLoS ONE, 6(6): e20429. https://doi.org/10.1371/journal.pone.0020429
RkJQdWJsaXNoZXIy MjQ4ODYzNA==