Journal of Energy Bioscience 2025, Vol.16, No.3, 105-116 http://bioscipublisher.com/index.php/jeb 115 Malaťák J., Velebil J., Bradna J., Kučera M., Gendek A., Aniszewska M., and Alexiou Ivanova T., 2024, Comparative experimental assessment of pollutant emission behavior in combustion of untreated and thermally treated solid biofuels from spruce chips and rapeseed straw, Atmosphere, 15(4): 452. https://doi.org/10.3390/atmos15040452 Masarovičová E., Kráľová K., and Peško M., 2009, Energetic plants–cost and benefit, Ecological chemistry and engineering, 16(3): 263-276. Medvedev V. V., Hakimov E. I., Fatyhov I. S., Vafina E. F., 2020, Biochemical composition of dry substance of above-ground biomass and rape seeds, Vestnik of Kazan State Agrarian University, 2: 29-34. https://doi.org/10.12737/2073-0462-2020-29-34 Pei Y., Li Y., Zhang Y., Yu C., Fu T., Zou J., Tu Y., Peng L., and Chen P., 2016, G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed, Bioresource Technology, 203: 325-333. https://doi.org/10.1016/j.biortech.2015.12.072 Rodias E., Aivazidou E., Achillas C., Aidonis D., and Bochtis D., 2020, Water-energy-nutrients synergies in the agrifood sector: A circular economy framework, Energies, 14(1): 159. https://doi.org/10.3390/en14010159 Rodríguez-Espinosa T., Papamichael I., Voukkali I., Gimeno A.P., Candel M.B.A., Navarro-Pedreño J., Zorpas A.A., and Lucas I.G., 2023, Nitrogen management in farming systems under the use of agricultural wastes and circular economy, Science of The Total Environment, 876: 162666. https://doi.org/10.1016/j.scitotenv.2023.162666 Sadr M., Esmaeili Aliabadi D., Avşar B., and Thrän D., 2024, Assessing the impact of seasonality on bioenergy production from energy crops in Germany, considering just-in-time philosophy, Biofuels, Bioproducts and Biorefining, 18(4): 883-898. https://doi.org/10.1002/bbb.2602 Şenocak A., and Gören H., 2021, Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study, Engineering Science and Technology, an International Journal. 26: 100992. https://doi.org/10.1016/J.JESTCH.2021.04.011 Sherwood J., 2020, The significance of biomass in a circular economy, Bioresource Technology, 300: 122755. https://doi.org/10.1016/j.biortech.2020.122755 Suchocki T., 2024, Energy utilization of rapeseed biomass in Europe: a review of current and innovative applications, Energies, 17(23): 6177. https://doi.org/10.3390/en17236177 Toplicean I.M., and Datcu A.D., 2024, An overview on bioeconomy in agricultural sector, biomass production, recycling methods, and circular economy considerations, Agriculture, 14(7): 1143. https://doi.org/10.3390/agriculture14071143 Tshikovhi A., and Motaung T., 2023, Technologies and innovations for biomass energy production, Sustainability, 15(16): 12121. https://doi.org/10.3390/su151612121 Vallejo F., Yánez-Sevilla D., Díaz-Robles L. A., Cubillos F., Espinoza-Pérez A., Espinoza-Pérez L., Pino-Cortés E., and Cereceda-Balic F., 2024, Insights into hydrothermal treatment of biomass blends: Assessing energy yield and ash content for biofuel enhancement, Plos one, 19(5): e0304054. https://doi.org/10.1371/journal.pone.0304054 van Selm B., Hijbeek R., van Middelaar C.E., de Boer I.J., and van Ittersum M.K., 2025, How to use residual biomass streams in circular food systems to minimise land use or GHG emissions, Agricultural Systems, 222: 104185. https://doi.org/10.1016/j.agsy.2024.104185 Wang C., Wang Z., El-Badri A. M., Batool M., Anwar S., Wang X., Bai M., You Y., Wang B., Wang J., Xu Z., Kuai J., and Zhou G., 2023a, Moderately deep tillage enhances rapeseed yield by improving frost resistance of seedling during overwintering, Field Crops Research, 304: 109173. https://doi.org/10.1016/j.fcr.2023.109173 Wang W., Ma L., Wu J., Sun W., Ali S., Yang G., Pu Y., Liu L., and Fang Y., 2023b, Cultivation practices with various mulching materials to regulate chlorophyll fluorescence, cuticular wax, and rapeseed productivity under semi-arid regions, Agricultural Water Management, 288: 108465. https://doi.org/10.1016/j.agwat.2023.108465 Wang Y., Zhao Y., and Hu C., 2024, Slow pyrolysis of de-oiled rapeseed cake: Influence of pyrolysis parameters on the yield and characteristics of the liquid obtained, Energies, 17(3): 612. https://doi.org/10.3390/en17030612 Wassner D.F., Gagliardi Reolon M.B., Gómez N.V., Lopez C.G., and Rondanini D.P., 2020, Rapeseed stubble as resource for bioenergy and biorefineries: Effect of genotype and cultivation conditions on chaff and stalk biomass and quality, Universidad de Buenos Aires. Facultad de Agronomía; Agronomia y Ambiente, 40(2): 88-99. Woźniak E., Waszkowska E., Zimny T., Sowa S., and Twardowski T., 2019, The rapeseed potential in Poland and Germany in the context of production, legislation, and intellectual property rights, Frontiers in Plant Science, 10: 1423. https://doi.org/10.3389/fpls.2019.01423 Xie Z., Kong J., Tang M., Luo Z., Li D., Liu R., Feng S., and Zhang C., 2023, Modelling winter rapeseed (Brassica napus L.) growth and yield under different sowing dates and densities using AquaCrop model, Agronomy, 13(2): 367. https://doi.org/10.3390/agronomy13020367 Yang X., Liu Y., Bezama A., and Thrän D., 2022, Two birds with one stone: A combined environmental and economic performance assessment of rapeseed-based biodiesel production, GCB Bioenergy, 14(2): 215-241. https://doi.org/10.1111/gcbb.12913
RkJQdWJsaXNoZXIy MjQ4ODYzNA==