Journal of Energy Bioscience 2025, Vol.16, No.3, 105-116 http://bioscipublisher.com/index.php/jeb 114 Brčić M., Kricka T., Pospisil A., and Pospisil M., 2023, Effects of genotype and nitrogen topdressing on rapeseed seed yield and stalkcombustion properties, Turkish Journal of Agriculture and Forestry, 47(6): 894-906. https://doi.org/10.55730/1300-011x.3135 Bui V.D., Vu H.P., Nguyen H.P., Duong X.Q., Nguyen D.T., Pham M.T., and Nguyen P.Q.P., 2023, Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy, Sustainable Energy Technologies and Assessments, 55: 102991. https://doi.org/10.1016/j.seta.2022.102991 Ciunel K., and Klugmann-Radziemska E., 2014, Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source, Environmental Technology, 35(2): 195-202. https://doi.org/10.1080/09593330.2013.822021 Duque-Acevedo M., Belmonte-Ureña L. J., Plaza-Úbeda J. A., and Camacho-Ferre F., 2020, The management of agricultural waste biomass in the framework of circular economy and bioeconomy: An opportunity for greenhouse agriculture in Southeast Spain, Agronomy, 10(4): 489. https://doi.org/10.3390/agronomy10040489 Esmaeilpour-Troujeni M., Rohani A., and Khojastehpour M., 2021, Optimization of rapeseed production using exergy analysis methodology, Sustainable Energy Technologies and Assessments, 43: 100959. https://doi.org/10.1016/j.seta.2020.100959 Gallorini R., Aquilia S., Bello C., Ciardelli F., Pinna M., Papini A. M., and Rosi L., 2023, Pyrolysis of spent rapeseed meal: A circular economy example for waste valorization, Journal of Analytical and Applied Pyrolysis, 174: 106138. https://doi.org/10.1016/j.jaap.2023.106138 Gheorghe D., and Neacsu A., 2024, The influence of additives upon the energetic parameters and physicochemical properties of environmentally friendly biomass pellets, Journal of the Mexican Chemical Society, 68(3): 438-454. https://doi.org/10.29356/jmcs.v68i3.2032 González-García S., García-Rey D., and Hospido A., 2013, Environmental life cycle assessment for rapeseed-derived biodiesel, The International Journal of Life Cycle Assessment, 18: 61-76. https://doi.org/10.1007/s11367-012-0444-5 Güleç F., Samson A., Williams O., Kostas E.T., and Lester E., 2022b, Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies–Impacts of feedstocks and process conditions, Fuel Processing Technology, 238, 107492. https://doi.org/10.1016/j.fuproc.2022.107492 Güleç F., Williams O., Kostas E. T., Samson A., and Lester E., 2022a, A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction, Energy Conversion and Management, 270: 116260. https://doi.org/10.1016/j.enconman.2022.116260 Guo W., Li H., Simayi S., Wen Y., Bian Q., Zhu J., Liu Z., Su H., Wei Y., Liu G., and Fu Y., 2024, Optimizing planting density, irrigation, and nitrogen application can improve rapeseed yield in Xinjiang’s Aksu by reducing the lodging rate, Sustainability, 16(20): 9119. https://doi.org/10.3390/su16209119 Gupta R., McRoberts R., Yu Z., Smith C., Sloan W., and You S., 2022, Life cycle assessment of biodiesel production from rapeseed oil: Influence of process parameters and scale, Bioresource Technology, 360: 127532. https://doi.org/10.1016/j.biortech.2022.127532 Haque F., Fan C., and Lee Y.Y., 2023, From waste to value: Addressing the relevance of waste recovery to agricultural sector in line with circular economy, Journal of Cleaner Production, 415: 137873. https://doi.org/10.1016/j.jclepro.2023.137873 Jahangir M.H., and Cheraghi R., 2020, Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load, Sustainable Energy Technologies and Assessments, 42: 100895. https://doi.org/10.1016/j.seta.2020.100895 Karaosmanoğlu F., Tetik E., and Göllü E., 1999, Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant, Fuel Processing Technology, 59(1): 1-12. https://doi.org/10.1016/S0378-3820(99)00004-1 Karaosmanoglu F., Tetik E., Gurboy B., and Sanli I., 1999, Characterization of the straw stalk of the rapeseed plant as a biomass energy source, Energy Sources, 21(9): 801-810. https://doi.org/10.1080/00908319950014353 Lee J., Kim S., You S., and Park Y.K., 2023, Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renewable and Sustainable Energy Reviews, 178: 113240. https://doi.org/10.1016/j.rser.2023.113240 Lin G., Li H., Yang Z., Ruan Y., and Liu C., 2024a, Pod canopy staggered-layer cultivation increases rapeseed (Brassica napus L.) yield by improving population canopy structure and fully utilizing light-energy resources, European Journal of Agronomy, 158: 127229. https://doi.org/10.1016/j.eja.2024.127229 Lin G., Wang L., Li Y., Li J., Qian C., Zhang X., and Zuo Q., 2024b, Optimal planting density increases the seed yield by improving biomass accumulation and regulating the canopy structure in rapeseed, Plants, 13(14): 1986. https://doi.org/10.3390/plants13141986
RkJQdWJsaXNoZXIy MjQ4ODYzNA==