Journal of Energy Bioscience 2025, Vol.16, No.2, 94-104 http://bioscipublisher.com/index.php/jeb 103 Krishna K., Ulhas R., and Malaviya A., 2023, Bioactive compounds from Cordyceps and their therapeutic potential, Critical Reviews in Biotechnology, 44(5): 753-773. https://doi.org/10.1080/07388551.2023.2231139 Kunhorm P., Chaicharoenaudomrung N., and Noisa P., 2019, Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies, Applied Microbiology and Biotechnology, 103: 1681-1691. https://doi.org/10.1007/s00253-019-09623-3 Lee B., Chen C., Hsu Y., Chuang P., Shih M., and Hsu W., 2021, Polysaccharides obtained fromCordyceps militaris alleviate hyperglycemia by regulating gut microbiota in mice fed a high-fat/sucrose diet. Foods, 10(8): 1870. https://doi.org/10.3390/foods10081870 Lee J., Kwon J., Won D., Lee J., Lee K., Lee S., and Hong E., 2010, Study of macrophage activation and structural characteristics of purified polysaccharide from the fruiting body of Cordyceps militaris, Journal of Microbiology and Biotechnology, 20(7): 1053-1060. https://doi.org/10.4014/JMB.0910.10022 Li B., Zhang J., Liu Y., Wang Z., and Xu F., 2024a, Characterization, antioxidant capacity and protective effect of peptides fromCordyceps militaris cultivated with tussah pupa on oxidative injured HepG2 cells, Journal of Microbiology and Biotechnology, 34: 1082-1091. https://doi.org/10.4014/jmb.2312.12012 Li X., Jiang R., Wang S., Li C., Xu Y., Li S., Li Q., and Wang L., 2024b, Prospects for cordycepin biosynthesis in microbial cell factories, Frontiers in Chemical Engineering, 6: 1446454. https://doi.org/10.3389/fceng.2024.1446454 Li X., Liu Q., Li W., Li Q., Qian Z., Liu X., and Dong C., 2018, A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry, Critical Reviews in Biotechnology, 39: 181-191. https://doi.org/10.1080/07388551.2018.1531820 Liu T., Zhuo G., and Guo J., 2010, Study on sustainable utilization of cordyceps in tibet, Tibetan Studies, 3: 114-120. Liu W., Dun M., Liu X., Zhang G., and Ling J., 2022, Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris, International Journal of Food Properties, 25: 477-491. https://doi.org/10.1080/10942912.2022.2048009 Liu X., Huang Y., Chen Y., and Cao Y., 2016, Partial structural characterization, as well as immunomodulatory and anti-aging activities of CP2-c2-s2 polysaccharide fromCordyceps militaris, RSC Advances, 6: 104094-104103. https://doi.org/10.1039/C6RA23612J Luo X., Duan Y., Yang W., Zhang H., Li C., and Zhang J., 2017, Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction fromCordyceps militaris, Carbohydrate Polymers, 157: 794-802. https://doi.org/10.1016/j.carbpol.2016.10.066 Oh J., Yoon D., Shrestha B., Choi H., and Sung G., 2018, Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies, Journal of Microbiology, 57: 54-63. https://doi.org/10.1007/s12275-019-8486-z Paula R., Antoniêto A., Ribeiro L., Srivastava N., O’donovan A., Mishra P., Gupta V., and Silva R., 2019, Engineered microbial host selection for value-added bioproducts from lignocellulose, Biotechnology Advances, 37(6): 107347. https://doi.org/10.1016/j.biotechadv.2019.02.003 Phoungthong K., Aiphuk W., Maneerat T., Suwunwong T., Choto P., and Chomnunti P., 2022, Utilization of corncob biochar in cultivation media for cordycepin production and biomass of Cordyceps militaris, Sustainability, 14(15): 9362. https://doi.org/10.3390/su14159362 Pintathong P., Chomnunti P., Sangthong S., Jirarat A., and Chaiwut P., 2021, The feasibility of utilizing cultured Cordyceps militaris residues in cosmetics: biological activity assessment of their crude extracts, Journal of Fungi, 7(11): 973. https://doi.org/10.3390/jof7110973 Qin P., Li X., Yang H., Wang Z., and Lu D., 2019, Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi, Molecules, 24(12): 2231. https://doi.org/10.3390/molecules24122231 Ran X., Zhang M., Wang Y., and Adhikari B., 2019, Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: a review, Critical Reviews in Food Science and Nutrition, 59: 450-461. https://doi.org/10.1080/10408398.2017.1377149 Rupa E., Li J., Arif M., Ya-Xi H., Puja A., Chan A., Hoang V., Kaliraj L., Yang D., and Kang S., 2020, Cordyceps militaris fungus extracts-mediated nanoemulsion for improvement antioxidant, antimicrobial, and anti-inflammatory activities, Molecules, 25(23): 5733. https://doi.org/10.3390/molecules25235733 Sharma S., Madaan K., and Kaur R., 2022, Cordycepin as a metabolite with pharmacological potential: a review, International Journal of Medicinal Mushrooms, 24(8): 1-20. https://doi.org/10.1615/IntJMedMushrooms.2022044442 Shashidhar G., Giridhar P., and Manohar B., 2015, Functional polysaccharides from medicinal mushroomCordyceps sinensis as a potent food supplement: extraction, characterization and therapeutic potentials – a systematic review, RSC Advances, 5: 16050-16066. https://doi.org/10.1039/C4RA13539C
RkJQdWJsaXNoZXIy MjQ4ODYzNA==